Abstract machine
In computer science, an abstract machine is a theoretical model that allows for a detailed and precise analysis of how a computer system functions.[1] It is similar to a mathematical function in that it receives inputs and produces outputs based on predefined rules. Abstract machines vary from literal machines in that they are expected to perform correctly and independently of hardware.[2] Abstract machines are "machines" because they allow step-by-step execution of programmes; they are "abstract" because they ignore many aspects of actual (hardware) machines.[3] A typical abstract machine consists of a definition in terms of input, output, and the set of allowable operations used to turn the former into the latter. They can be used for purely theoretical reasons as well as models for real-world computer systems.[2] In the theory of computation, abstract machines are often used in thought experiments regarding computability or to analyse the complexity of algorithms.[3] This use of abstract machines is fundamental to the field of computational complexity theory, such as finite state machines, Mealy machines, push-down automata, and Turing machines.[4]
Not to be confused with Virtual machine.Any implementation of an abstract machine in the case of physical implementation (in hardware) uses some kind of physical device (mechanical or electronic) to execute the instructions of a programming language. An abstract machine, however, can also be implemented in software or firmware at levels between the abstract machine and underlying physical device.[9]