Acid rain
Acid rain is rain or any other form of precipitation that is unusually acidic, meaning that it has elevated levels of hydrogen ions (low pH). Most water, including drinking water, has a neutral pH that exists between 6.5 and 8.5, but acid rain has a pH level lower than this and ranges from 4–5 on average.[1][2] The more acidic the acid rain is, the lower its pH is.[2] Acid rain can have harmful effects on plants, aquatic animals, and infrastructure. Acid rain is caused by emissions of sulfur dioxide and nitrogen oxide, which react with the water molecules in the atmosphere to produce acids.
For other uses, see Acid rain (disambiguation).
Acid rain has been shown to have adverse impacts on forests, freshwaters, soils, microbes, insects and aquatic life-forms.[3] In ecosystems, persistent acid rain reduces tree bark durability, leaving flora more susceptible to environmental stressors such as drought, heat/cold and pest infestation. Acid rain is also capable of detrimenting soil composition by stripping it of nutrients such as calcium and magnesium which play a role in plant growth and maintaining healthy soil. In terms of human infrastructure, acid rain also causes paint to peel, corrosion of steel structures such as bridges, and weathering of stone buildings and statues as well as having impacts on human health.[4][5][6][7]
Some governments, including those in Europe and North America, have made efforts since the 1970s to reduce the release of sulfur dioxide and nitrogen oxide into the atmosphere through air pollution regulations. These efforts have had positive results due to the widespread research on acid rain starting in the 1960s and the publicized information on its harmful effects.[8][9] The main source of sulfur and nitrogen compounds that result in acid rain are anthropogenic, but nitrogen oxides can also be produced naturally by lightning strikes and sulfur dioxide is produced by volcanic eruptions.[10]
Acid deposition
Wet deposition
Wet deposition of acids occurs when any form of precipitation (rain, snow, and so on) removes acids from the atmosphere and delivers it to the Earth's surface. This can result from the deposition of acids produced in the raindrops (see aqueous phase chemistry above) or by the precipitation removing the acids either in clouds or below clouds. Wet removal of both gases and aerosols are both of importance for wet deposition.[2]
CAM plants are predominantly found in arid environments, where water availability is limited.
Prevention methods
Technical solutions
Many coal-firing power stations use flue-gas desulfurization (FGD) to remove sulfur-containing gases from their stack gases. For a typical coal-fired power station, FGD will remove 95% or more of the SO2 in the flue gases. An example of FGD is the wet scrubber which is commonly used. A wet scrubber is basically a reaction tower equipped with a fan that extracts hot smoke stack gases from a power plant into the tower. Lime or limestone in slurry form is also injected into the tower to mix with the stack gases and combine with the sulfur dioxide present. The calcium carbonate of the limestone produces pH-neutral calcium sulfate that is physically removed from the scrubber. That is, the scrubber turns sulfur pollution into industrial sulfates.
In some areas the sulfates are sold to chemical companies as gypsum when the purity of calcium sulfate is high. In others, they are placed in landfill. The effects of acid rain can last for generations, as the effects of pH level change can stimulate the continued leaching of undesirable chemicals into otherwise pristine water sources, killing off vulnerable insect and fish species and blocking efforts to restore native life.
Fluidized bed combustion also reduces the amount of sulfur emitted by power production.
Vehicle emissions control reduces emissions of nitrogen oxides from motor vehicles.