Katana VentraIP

Age of Earth

The age of Earth is estimated to be 4.54 ± 0.05 billion years (4.54 × 109 years ± 1%).[1][2][3][4] This age may represent the age of Earth's accretion, or core formation, or of the material from which Earth formed.[2] This dating is based on evidence from radiometric age-dating of meteorite[5] material and is consistent with the radiometric ages of the oldest-known terrestrial material[6] and lunar samples.[7]

Following the development of radiometric age-dating in the early 20th century, measurements of lead in uranium-rich minerals showed that some were in excess of a billion years old.[8] The oldest such minerals analyzed to date—small crystals of zircon from the Jack Hills of Western Australia—are at least 4.404 billion years old.[6][9][10] Calcium–aluminium-rich inclusions—the oldest known solid constituents within meteorites that are formed within the Solar System—are 4.567 billion years old,[11][12] giving a lower limit for the age of the Solar System.


It is hypothesised that the accretion of Earth began soon after the formation of the calcium-aluminium-rich inclusions and the meteorites. Because the time this accretion process took is not yet known, and predictions from different accretion models range from a few million up to about 100 million years, the difference between the age of Earth and of the oldest rocks is difficult to determine. It is also difficult to determine the exact age of the oldest rocks on Earth, exposed at the surface, as they are aggregates of minerals of possibly different ages.

(1994-02-01). The Age of the Earth. Stanford University Press. ISBN 978-0-8047-2331-2.

Dalrymple, G. Brent

Baadsgaard, H.; Lerbekmo, J.F.; Wijbrans, J.R., 1993. Multimethod radiometric age for a bentonite near the top of the Baculites reesidei Zone of southwestern Saskatchewan (Campanian-Maastrichtian stage boundary?). Canadian Journal of Earth Sciences, v.30, p. 769–775.

Baadsgaard, H. and Lerbekmo, J.F., 1988. A radiometric age for the Cretaceous-Tertiary boundary based on K-Ar, Rb-Sr, and U-Pb ages of bentonites from Alberta, Saskatchewan, and Montana. Canadian Journal of Earth Sciences, v.25, p. 1088–1097.

Eberth, D.A. and Braman, D., 1990. Stratigraphy, sedimentology, and vertebrate paleontology of the Judith River Formation (Campanian) near Muddy Lake, west-central Saskatchewan. Bulletin of Canadian Petroleum Geology, v.38, no.4, p. 387–406.

Goodwin, M.B. and Deino, A.L., 1989. The first radiometric ages from the Judith River Formation (Upper Cretaceous), Hill County, Montana. Canadian Journal of Earth Sciences, v.26, p. 1384–1391.

Gradstein, F. M.; Agterberg, F.P.; Ogg, J.G.; Hardenbol, J.; van Veen, P.; Thierry, J. and Zehui Huang., 1995. A Triassic, Jurassic and Cretaceous time scale. IN: Bergren, W. A.; Kent, D.V.; Aubry, M-P. and Hardenbol, J. (eds.), Geochronology, Time Scales, and Global Stratigraphic Correlation. Society of Economic Paleontologists and Mineralogists, Special Publication No. 54, p. 95–126.

Harland, W.B., Cox, A.V.; Llewellyn, P.G.; Pickton, C.A.G.; Smith, A.G.; and Walters, R., 1982. A Geologic Time Scale: 1982 edition. Cambridge University Press: Cambridge, 131p.

Harland, W.B.; ; Cox, A.V.; Craig, L.E.; Smith, A.G.; Smith, D.G., 1990. A Geologic Time Scale, 1989 edition. Cambridge University Press: Cambridge, p. 1–263. ISBN 0-521-38765-5

Armstrong, R.L.

Harper, C.W. Jr (1980). "Relative age inference in paleontology". Lethaia. 13 (3): 239–248. :10.1111/j.1502-3931.1980.tb00638.x.

doi

Obradovich, J.D., 1993. A Cretaceous time scale. IN: Caldwell, W.G.E. and Kauffman, E.G. (eds.). Evolution of the Western Interior Basin. Geological Association of Canada, Special Paper 39, p. 379–396.

Palmer, Allison R (1983). "The Decade of North American Geology 1983 Geologic Time Scale". Geology. 11 (9): 503–504. :1983Geo....11..503P. doi:10.1130/0091-7613(1983)11<503:tdonag>2.0.co;2.

Bibcode

Powell, James Lawrence, 2001, Mysteries of Terra Firma: the Age and Evolution of the Earth, Simon & Schuster,  0-684-87282-X

ISBN

by Chris Stassen (TalkOrigins.org)

The Age of the Earth

USGS preface on the Age of the Earth

NASA exposition on the age of Martian meteorites

on In Our Time at the BBC

Ageing the Earth

Pre-1900 Non-Religious Estimates of the Age of the Earth