Katana VentraIP

Air purifier

An air purifier or air cleaner is a device which removes contaminants from the air in a room to improve indoor air quality. These devices are commonly marketed as being beneficial to allergy sufferers and asthmatics, and at reducing or eliminating second-hand tobacco smoke.

The commercially graded air purifiers are manufactured as either small stand-alone units or larger units that can be affixed to an air handler unit (AHU) or to an HVAC unit found in the medical, industrial, and commercial industries. Air purifiers may also be used in industry to remove impurities from air before processing. Pressure swing adsorbers or other adsorption techniques are typically used for this.

History[edit]

In 1830, a patent was awarded to Charles Anthony Deane for a device comprising a copper helmet with an attached flexible collar and garment. A long leather hose attached to the rear of the helmet was to be used to supply air, the original concept being that it would be pumped using a double bellows. A short pipe allowed breathed air to escape. The garment was to be constructed from leather or airtight cloth, secured by straps.[1] In the 1860s, John Stenhouse filed two patents applying the absorbent properties of wood charcoal to air purification (patents 19 July 1860 and 21 May 1867), thereby creating the first practical respirator.[2]


In 1871, the physicist John Tyndall wrote about his invention, a fireman's respirator, as a result of a combination of protective features of the Stenhouse's respirator and other breathing devices.[3] This invention was later described in 1875.[4]


In the 1950s, HEPA filters were commercialized as highly efficient air filters, after being put to use in the 1940s in the United States' Manhattan Project to control airborne radioactive contaminants.[5][6]


The first residential HEPA filter was reportedly sold in 1963 by brothers Manfred and Klaus Hammes in Germany,[7] who created the Incen Air Corporation which was the precursor to the IQAir corporation.

High-efficiency particulate arrestance () filters remove at least 99.97% of 0.3-micrometer particles and are usually more effective at removing larger and smaller particles.[15] HEPA purifiers, which filter all the air going into a clean room, must be arranged so that no air bypasses the HEPA filter. In dusty environments, a HEPA filter may follow an easily cleaned conventional filter (prefilter) which removes coarser impurities so that the HEPA filter needs cleaning or replacing less frequently. HEPA filters do not generate ozone or harmful byproducts in the course of operation.

HEPA

Filter HVAC at 14 or above are rated to remove airborne particles of 0.3 micrometers or larger. A high-efficiency MERV 14 filter has a capture rate of at least 75% for particles between 0.3 and 1.0 micrometers. Although the capture rate of a MERV filter is lower than that of a HEPA filter, a central air system can move significantly more air in the same period of time. Using a high-grade MERV filter can be more effective than using a high-powered HEPA machine at a fraction of the initial capital expenditure. Unfortunately, most furnace filters are slid in place without an airtight seal, which allows air to pass around the filters. This problem is worse for the higher-efficiency MERV filters because of the increase in air resistance. Higher-efficiency MERV filters are usually denser and increase air resistance in the central system, requiring a greater air pressure drop and consequently increasing energy costs.

MERV

There is ongoing research to enable viable and effective treated air filters (i.e. air filters coated with antimicrobial agents) for preventing the spread of airborne pathogens.[16][17][18]

biocide

Potential ozone hazards[edit]

As with other health-related appliances, there is controversy surrounding the claims of certain companies, especially involving ionic air purifiers. Many air purifiers generate some ozone, an energetic allotrope of three oxygen atoms, and in the presence of humidity, small amounts of NOx. Because of the nature of the ionization process, ionic air purifiers tend to generate the most ozone. This is a serious concern because ozone is a criteria air pollutant regulated by health-related US federal and state standards. In a controlled experiment, in many cases, ozone concentrations were well in excess of public and/or industrial safety levels established by US Environmental Protection Agency, particularly in poorly ventilated rooms.[39]


Ozone can damage the lungs, causing chest pain, coughing, shortness of breath and throat irritation. It can also worsen chronic respiratory diseases such as asthma and compromise the ability of the body to fight respiratory infections—even in healthy people. People who have asthma and allergy are most prone to the adverse effects of high levels of ozone. For example, increasing ozone concentrations to unsafe levels can increase the risk of asthma attacks.[40]


Due to the below average performance and potential health risks, Consumer Reports has advised against using ozone producing air purifiers.[41] Some manufacturers falsely claim outdoor and indoor ozone are different.[42] Claims that these devices restore a hypothesized ionic balance are unsupported by science.[42]


Ozone generators are used by cleanup contractors on unoccupied rooms to oxidize and permanently remove smoke, mold, and odor damage, and are considered a valuable and effective industrial tool.[43] However, these machines can produce undesirable by-products.[41]


In September 2007, the California Air Resources Board announced a ban of indoor air cleaning devices which produce ozone above a legal limit. This law, which took effect in 2010, requires testing and certification of all types of indoor air cleaning devices to verify that they do not emit excessive ozone.[44][45]

Industry and markets[edit]

As of 2015, the United States residential air purifier total addressable market was estimated at around $2 billion per year.[46]

Air sanitizer

Air-purifier with bladeless fan

Particulates

(Photoelectrochemical oxidation)

PECO

Nose filter

NASA Clean Air Study

Smog tower

Scrubber

Indoor air quality

Corsi–Rosenthal Box

CityTrees

Information on Clean Air Delivery Rate by AHAM

CADR.org

HEPA filter specifications for DOE contractors

DOE HEPA Filter Standards

US National Institutes of Health

Potera, C. (2011), Wood-Burning Stoves Get Help from HEPA Filters

by United States Environmental Protection Agency

Indoor Air Quality (IAQ)

by National Collaborating Centre for Environmental Health

Do-it-yourself (DIY) air cleaners: Evidence on effectiveness and considerations for safe operation

Air purifiers are not listed under Durable Medical Equipment

Health Insurance do not cover Air Purifiers