Katana VentraIP

Aldose reductase

In enzymology, aldose reductase (or aldehyde reductase) (EC 1.1.1.21) is a cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides. It is primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.[1]

: Fructose produced from sorbitol is used by the sperm cells.

Seminal vesicles

: Fructose produced from sorbitol can be used as an energy source for glycolysis and glyconeogenesis.

Liver

The aldose reductase reaction, in particular the sorbitol produced, is important for the function of various organs in the body. For example, it is generally used as the first step in a synthesis of fructose from glucose; the second step is the oxidation of sorbitol to fructose catalyzed by sorbitol dehydrogenase. The main pathway from glucose to fructose (glycolysis) involves phosphorylation of glucose by hexokinase to form glucose 6-phosphate, followed by isomerization to fructose 6-phosphate and hydrolysis of the phosphate, but the sorbitol pathway is useful because it does not require the input of energy in the form of ATP:


Aldose reductase is also present in the lens, retina, Schwann cells of peripheral nerves, placenta and red blood cells.


In Drosophila, CG6084 encoded a highly conserved protein of human Aldo-keto reductase 1B. dAKR1B in hemocytes, is necessary and sufficient for the increasement of plasma sugar alcohols after gut infection. Increased sorbitol subsequently activated Metalloprotease 2, which cleaves PGRP-LC to activate systemic immune response in fat bodies. Thus, aldose reductase provides a critical metabolic checkpoint in the global inflammatory response.[3]

Enzyme mechanism[edit]

The reaction mechanism of aldose reductase in the direction of aldehyde reduction follows a sequential ordered path where NADPH binds, followed by the substrate. Binding of NADPH induces a conformational change (Enzyme•NADPH → Enzyme*•NADPH) that involves hinge-like movement of a surface loop (residues 213–217) so as to cover a portion of the NADPH in a manner similar to that of a safety belt. The alcohol product is formed via a transfer of the pro-R hydride of NADPH to the re face of the substrate's carbonyl carbon. Following release of the alcohol product, another conformational change occurs (E*•NADP+ → E•NADP+) in order to release NADP+.[8] Kinetic studies have shown that reorientation of this loop to permit release of NADP+ appears to represent the rate-limiting step in the direction of aldehyde reduction.[9][10][11] As the rate of coenzyme release limits the catalytic rate, it can be seen that perturbation of interactions that stabilize coenzyme binding can have dramatic effects on the maximum velocity (Vmax).[11]


The hydride that is transferred from NADP+ to glucose comes from C-4 of the nicotinamide ring at the base of the hydrophobic cavity. Thus, the position of this carbon defines the enzyme's active site. There exist three residues in the enzyme within a suitable distance of the C-4 that could be potential proton donors: Tyr-48, His-110 and Cys-298. Evolutionary, thermodynamic and molecular modeling evidence predicted Tyr-48 as the proton donor. This prediction was confirmed the results of mutagenesis studies.[5][12][13] Thus, a [hydrogen-bonding] interaction between the phenolic hydroxyl group of Tyr-48 and the ammonium side chain of Lys-77 is thought to help to facilitate hydride transfer.[5]

Role in diabetes[edit]

Diabetes mellitus is recognized as a leading cause of new cases of blindness, and is associated with increased risk for painful neuropathy, heart disease and kidney failure. Many theories have been advanced to explain mechanisms leading to diabetic complications, including stimulation of glucose metabolism by the polyol pathway. Additionally, the enzyme is located in the eye (cornea, retina, lens), kidney, and the myelin sheath–tissues that are often involved in diabetic complications.[14] Under normal glycemic conditions, only a small fraction of glucose is metabolized through the polyol pathway, as the majority is phosphorylated by hexokinase, and the resulting product, glucose-6-phosphate, is utilized as a substrate for glycolysis or pentose phosphate metabolism.[15][16] However, in response to the chronic hyperglycemia found in diabetics, glucose flux through the polyol pathway is significantly increased. Up to 33% of total glucose utilization in some tissues can be through the polyol pathway.[17] Glucose concentrations are often elevated in diabetics and aldose reductase has long been believed to be responsible for diabetic complications involving a number of organs. Many aldose reductase inhibitors have been developed as drug candidates but virtually all have failed although some such as Epalrestat are commercially available in several countries. Additional reductase inhibitors such as Alrestatin, Exisulind, Imirestat, Zopolrestat, Tolrestat, Zenarestat, Caficrestat, Fidarestat, Govorestat, Ranirestat, Ponalrestat, Risarestat, Sorbinil, and Berberine, Poliumoside, Ganoderic acid[18] are currently in clinical trials.[19]

AKR1B1

Aldo-keto reductase