Katana VentraIP

Synchronization (alternating current)

In an alternating current (AC) electric power system, synchronization is the process of matching the frequency, phase and voltage of a generator or other source to an electrical grid in order to transfer power. If two unconnected segments of a grid are to be connected to each other, they cannot safely exchange AC power until they are synchronized.

A direct current (DC) generator can be connected to a power network simply by adjusting its open-circuit terminal voltage to match the network's voltage, by either adjusting its speed or its field excitation. The exact engine speed is not critical. However, an AC generator must additionally match its timing (frequency and phase) to the network voltage, which requires both speed and excitation to be systematically controlled for synchronization. This extra complexity was one of the arguments against AC operation during the war of currents in the 1880s. In modern grids, synchronization of generators is carried out by automatic systems.

Conditions[edit]

There are five conditions that must be met before the synchronization process takes place. The source (generator or sub-network) must have equal root-mean-square voltage, frequency, phase sequence, phase angle, and waveform to that of the system to which it is being synchronized.[1]


Waveform and phase sequence are fixed by the construction of the generator and its connections to the system. During installation of a generator, careful checks are made to ensure the generator terminals and all control wiring is correct so that the order of phases (phase sequence) matches the system. Connecting a generator with the wrong phase sequence will result in large, possibly damaging, currents as the system voltages are opposite to those of the generator terminal voltages.[2]


The voltage, frequency and phase angle must be controlled each time a generator is to be connected to a grid.[1]


Generating units for connection to a power grid have an inherent droop speed control that allows them to share load proportional to their rating. Some generator units, especially in isolated systems, operate with isochronous frequency control, maintaining constant system frequency independent of load.

Synchronous operation[edit]

While the generator is synchronized, the frequency of the system will change depending on load and the average characteristics of all the generating units connected to the grid.[1] Large changes in system frequency can cause the generator to fall out of synchronism with the system. Protective devices on the generator will operate to disconnect it automatically.

Phase synchronization

: allows power transmission between AC transmission systems that are not synchronized

High-voltage direct current

The Electrical Year Book 1937, published by Emmott and Company Limited, Manchester, England, pp 53–57 and 72

.

Flash Animation on Alternator Synchronization