Katana VentraIP

Astronomical unit

The astronomical unit (symbol: au,[1][2][3][4] or AU) is a unit of length defined to be exactly equal to 149,597,870,700 m.[5] Historically, the astronomical unit was conceived as the average Earth-Sun distance (the average of Earth's aphelion and perihelion), before its modern redefinition in 2012.

This article is about the unit of length. For constants, see astronomical constant. For units in astronomy, see astronomical system of units. For other uses of "AU", see Au.

Astronomical unit

au or AU or AU

   1.495978707×1011 m

   9.2956×107 mi

   4.8481×10−6 pc
   1.5813×10−5 ly
   215.03 R

The astronomical unit is used primarily for measuring distances within the Solar System or around other stars. It is also a fundamental component in the definition of another unit of astronomical length, the parsec.[6] One au is equivalent to 499 light-seconds to within 10 parts per million.

History of symbol usage[edit]

A variety of unit symbols and abbreviations have been in use for the astronomical unit. In a 1976 resolution, the International Astronomical Union (IAU) had used the symbol A to denote a length equal to the astronomical unit.[7] In the astronomical literature, the symbol AU is common. In 2006, the International Bureau of Weights and Measures (BIPM) had recommended ua as the symbol for the unit, from the French "unité astronomique".[8] In the non-normative Annex C to ISO 80000-3:2006 (later withdrawn), the symbol of the astronomical unit was also ua.


In 2012, the IAU, noting "that various symbols are presently in use for the astronomical unit", recommended the use of the symbol "au".[1] The scientific journals published by the American Astronomical Society and the Royal Astronomical Society subsequently adopted this symbol.[3][9] In the 2014 revision and 2019 edition of the SI Brochure, the BIPM used the unit symbol "au".[10][11] ISO 80000-3:2019, which replaces ISO 80000-3:2006, does not mention the astronomical unit.[12][13]

Usage and significance[edit]

With the definitions used before 2012, the astronomical unit was dependent on the heliocentric gravitational constant, that is the product of the gravitational constant, G, and the solar mass, M. Neither G nor M can be measured to high accuracy separately, but the value of their product is known very precisely from observing the relative positions of planets (Kepler's third law expressed in terms of Newtonian gravitation). Only the product is required to calculate planetary positions for an ephemeris, so ephemerides are calculated in astronomical units and not in SI units.


The calculation of ephemerides also requires a consideration of the effects of general relativity. In particular, time intervals measured on Earth's surface (Terrestrial Time, TT) are not constant when compared with the motions of the planets: the terrestrial second (TT) appears to be longer near January and shorter near July when compared with the "planetary second" (conventionally measured in TDB). This is because the distance between Earth and the Sun is not fixed (it varies between 0.9832898912 and 1.0167103335 au) and, when Earth is closer to the Sun (perihelion), the Sun's gravitational field is stronger and Earth is moving faster along its orbital path. As the metre is defined in terms of the second and the speed of light is constant for all observers, the terrestrial metre appears to change in length compared with the "planetary metre" on a periodic basis.


The metre is defined to be a unit of proper length. Indeed, the International Committee for Weights and Measures (CIPM) notes that "its definition applies only within a spatial extent sufficiently small that the effects of the non-uniformity of the gravitational field can be ignored".[25] As such, a distance within the Solar System without specifying the frame of reference for the measurement is problematic. The 1976 definition of the astronomical unit was incomplete because it did not specify the frame of reference in which to apply the measurement, but proved practical for the calculation of ephemerides: a fuller definition that is consistent with general relativity was proposed,[26] and "vigorous debate" ensued[27] until August 2012 when the IAU adopted the current definition of 1 astronomical unit = 149,597,870,700 metres.


The astronomical unit is typically used for stellar system scale distances, such as the size of a protostellar disk or the heliocentric distance of an asteroid, whereas other units are used for other distances in astronomy. The astronomical unit is too small to be convenient for interstellar distances, where the parsec and light-year are widely used. The parsec (parallax arcsecond) is defined in terms of the astronomical unit, being the distance of an object with a parallax of 1″. The light-year is often used in popular works, but is not an approved non-SI unit and is rarely used by professional astronomers.[28]


When simulating a numerical model of the Solar System, the astronomical unit provides an appropriate scale that minimizes (overflow, underflow and truncation) errors in floating point calculations.

Orders of magnitude (length)

Williams, D.; Davies, R. D. (1968). "A radio method for determining the astronomical unit". . 140 (4): 537. Bibcode:1968MNRAS.140..537W. doi:10.1093/mnras/140.4.537.

Monthly Notices of the Royal Astronomical Society

The IAU and astronomical units

(HTML version of the IAU Style Manual)

Recommendations concerning Units

Chasing Venus, Observing the Transits of Venus

Transit of Venus