Katana VentraIP

Band-pass filter

A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range. It's the opposite of a band-stop filter.

"Bandpass" redirects here. For other uses, see Bandpass (disambiguation).

Description[edit]

In electronics and signal processing, a filter is usually a two-port circuit or device which removes frequency components of a signal (an alternating voltage or current). A band-pass filter allows through components in a specified band of frequencies, called its passband but blocks components with frequencies above or below this band. This contrasts with a high-pass filter, which allows through components with frequencies above a specific frequency, and a low-pass filter, which allows through components with frequencies below a specific frequency. In digital signal processing, in which signals represented by digital numbers are processed by computer programs, a band-pass filter is a computer algorithm that performs the same function. The term band-pass filter is also used for optical filters, sheets of colored material which allow through a specific band of light frequencies, commonly used in photography and theatre lighting, and acoustic filters which allow through sound waves of a specific band of frequencies.


An example of an analogue electronic band-pass filter is an RLC circuit (a resistorinductorcapacitor circuit). These filters can also be created by combining a low-pass filter with a high-pass filter.[1]


A bandpass signal is a signal containing a band of frequencies not adjacent to zero frequency, such as a signal that comes out of a bandpass filter.[2]


An ideal bandpass filter would have a completely flat passband: all frequencies within the passband would be passed to the output without amplification or attenuation, and would completely attenuate all frequencies outside the passband.


In practice, no bandpass filter is ideal. The filter does not attenuate all frequencies outside the desired frequency range completely; in particular, there is a region just outside the intended passband where frequencies are attenuated, but not rejected. This is known as the filter roll-off, and it is usually expressed in dB of attenuation per octave or decade of frequency. Generally, the design of a filter seeks to make the roll-off as narrow as possible, thus allowing the filter to perform as close as possible to its intended design. Often, this is achieved at the expense of pass-band or stop-band ripple.


The bandwidth of the filter is simply the difference between the upper and lower cutoff frequencies. The shape factor is the ratio of bandwidths measured using two different attenuation values to determine the cutoff frequency, e.g., a shape factor of 2:1 at 30/3 dB means the bandwidth measured between frequencies at 30 dB attenuation is twice that measured between frequencies at 3 dB attenuation.

Q factor[edit]

A band-pass filter can be characterized by its Q factor. The Q-factor is the reciprocal of the fractional bandwidth. A high-Q filter will have a narrow passband and a low-Q filter will have a wide passband. These are respectively referred to as narrow-band and wide-band filters.

Atomic line filter

Audio crossover

Difference of Gaussians

Sallen–Key topology

Media related to Bandpass filters at Wikimedia Commons