Weil domains[edit]

A Weil domain (Weil 1935) is an analytic polyhedron with a domain U in Cn defined by inequalities fj(z) < 1 for functions fj that are holomorphic on some neighborhood of the closure of U, such that the faces of the Weil domain (where one of the functions is 1 and the others are less than 1) all have dimension 2n − 1, and the intersections of k faces have codimension at least k.

Andreotti–Norguet formula

Bochner–Martinelli formula

Chirka, E.M. (2001) [1994], , Encyclopedia of Mathematics, EMS Press

"Bergman–Weil representation"

Shirinbekov, M. (2001) [1994], , Encyclopedia of Mathematics, EMS Press

"Weil domain"

(1935), "L'intégrale de Cauchy et les fonctions de plusieurs variables", Mathematische Annalen, 111 (1): 178–182, doi:10.1007/BF01472212, ISSN 0025-5831, JFM 61.0371.03, MR 1512987, S2CID 120807854, Zbl 0011.12301.

Weil, André