Big Crunch
The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Chill is more likely.[1][2][3] However, some physicists have proposed that a "Big Crunch-style" event could result from a dark energy fluctuation.[4]
The theory dates back to 1922, with Russian physicist Alexander Friedmann creating a set of equations showing that the end of the universe depends on its density. It could either expand or contract rather than stay stable. With enough matter, gravity could stop the universe's expansion and eventually reverse it. This reversal would result in the universe collapsing on itself, not too dissimilar to a black hole.[5]
The ending of the Big Crunch would get filled with radiation from stars and high-energy particles; when this is condensed and blueshifted to higher energy, it would be intense enough to ignite the surface of stars before they collide.[6] In the final moments, the universe would be one large fireball with a temperature of infinity, and at the absolute end, neither time, nor space would remain.[7]
Overview[edit]
The Big Crunch[8] scenario hypothesized that the density of matter throughout the universe is sufficiently high that gravitational attraction will overcome the expansion which began with the Big Bang. The FLRW cosmology can predict whether the expansion will eventually stop based on the average energy density, Hubble parameter, and cosmological constant. If the expansion stopped, then contraction will inevitably follow, accelerating as time passes and finishing the universe in a kind of gravitational collapse,
turning the universe into a black hole.
Experimental evidence in the late 1990s and early 2000s (namely the observation of distant supernovas as standard candles; and the well-resolved mapping of the cosmic microwave background)[9] led to the conclusion that the expansion of the universe is not getting slowed by gravity but is instead accelerating. The 2011 Nobel Prize in Physics was awarded to researchers who contributed to this discovery.[1]
The Big Crunch theory also leads into another hypothesis known as the Big Bounce, in which after the big crunch destroys the universe, it does a sort of bounce, causing another big bang.[10] This could potentially repeat forever in a phenomenon known as a cyclic universe.
Empirical scenarios from physical theories[edit]
If a form of quintessence driven by a scalar field evolving down a monotonically decreasing potential that passes sufficiently below zero is the (main) explanation of dark energy and current data (in particular observational constraints on dark energy) is true as well, the accelerating expansion of the Universe would inverse to contraction within the cosmic near-future of the next 100 million years. According to an Andrei-Ijjas-Steinhardt study, the scenario fits "naturally with cyclic cosmologies and recent conjectures about quantum gravity". The study suggests that the slow contraction phase would "endure for a period of order 1 billion y before the universe transitions to a new phase of expansion".[26][27][28]
Effects[edit]
Paul Davies considered a scenario in which the Big Crunch happens about 100 billion years from the present. In his model, the contracting universe would evolve roughly like the expanding phase in reverse. First, galaxy clusters, and then galaxies, would merge, and the temperature of the cosmic microwave background (CMB) would begin to rise as CMB photons get blueshifted. Stars would eventually become so close together that they begin to collide with each other. Once the CMB becomes hotter than M-type stars (about 500,000 years before the Big Crunch in Davies' model), they would no longer be able to radiate away their heat and would cook themselves until they evaporate; this continues for successively hotter stars until O-type stars boil away about 100,000 years before the Big Crunch. In the last minutes, the temperature of the universe would be so great that atoms and atomic nuclei would break up and get sucked up into already coalescing black holes. At the time of the Big Crunch, all the matter in the universe would be crushed into an infinitely hot, infinitely dense singularity similar to the Big Bang.[29] The Big Crunch may be followed by another Big Bang, creating a new universe.
In culture[edit]
In The Restaurant at the End of the Universe, a novel by Douglas Adams, the concept is that a restaurant, Milliways, is set up to allow patrons to observe the end of the Universe, or "Gnab Gib", as it is referred to, as they dine.[30] The term is sometimes used in the mainstream, for example (as "gnaB giB") in Physics I For Dummies and in a posting discussing the Big Crunch.[31]