Positive characteristic[edit]

One also has a weaker form of this theorem in positive characteristic. Namely, let G be a semisimple algebraic group over an algebraically closed field of characteristic . Then it remains true that for all i if λ is a weight such that is non-dominant for all as long as λ is "close to zero".[1] This is known as the Kempf vanishing theorem. However, the other statements of the theorem do not remain valid in this setting.


More explicitly, let λ be a dominant integral weight; then it is still true that for all , but it is no longer true that this G-module is simple in general, although it does contain the unique highest weight module of highest weight λ as a G-submodule. If λ is an arbitrary integral weight, it is in fact a large unsolved problem in representation theory to describe the cohomology modules in general. Unlike over , Mumford gave an example showing that it need not be the case for a fixed λ that these modules are all zero except in a single degree i.

Theorem of the highest weight

; Harris, Joe (1991). Representation theory. A first course. Graduate Texts in Mathematics, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi:10.1007/978-1-4612-0979-9. ISBN 978-0-387-97495-8. MR 1153249. OCLC 246650103..

Fulton, William

Baston, Robert J.; (1989), The Penrose Transform: its Interaction with Representation Theory, Oxford University Press. (reprinted by Dover)

Eastwood, Michael G.

, Encyclopedia of Mathematics, EMS Press, 2001 [1994]

"Bott–Borel–Weil theorem"

by Jacob Lurie. Retrieved on Jul. 13, 2014.

A Proof of the Borel–Weil–Bott Theorem

(1954) [1951], "Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d'après Armand Borel et André Weil)" [Linear representations and Kähler homogeneous spaces of compact Lie groups (after Armand Borel and André Weil)], Séminaire Bourbaki (in French), 2 (100): 447–454.

Serre, Jean-Pierre

(1955), Sur certaines classes d'espaces homogènes de groupes de Lie, Acad. Roy. Belg. Cl. Sci. Mém. Coll. (in French), vol. 29.

Tits, Jacques

Sepanski, Mark R. (2007), Compact Lie groups., Graduate Texts in Mathematics, vol. 235, New York: Springer,  9780387302638.

ISBN

Knapp, Anthony W. (2001), Representation theory of semisimple groups: An overview based on examples, Princeton Landmarks in Mathematics, Princeton, NJ: Princeton University Press. Reprint of the 1986 original.

(1998). "Borel–Weil–Bott theory on the moduli stack of G-bundles over a curve". Inventiones Mathematicae. 134 (1): 1–57. doi:10.1007/s002220050257. MR 1646586.

Teleman, Constantin

This article incorporates material from Borel–Bott–Weil theorem on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.