Katana VentraIP

Arnold tongue

In mathematics, particularly in dynamical systems, Arnold tongues (named after Vladimir Arnold)[1][2] are a pictorial phenomenon that occur when visualizing how the rotation number of a dynamical system, or other related invariant property thereof, changes according to two or more of its parameters. The regions of constant rotation number have been observed, for some dynamical systems, to form geometric shapes that resemble tongues, in which case they are called Arnold tongues.[3]

Arnold tongues are observed in a large variety of natural phenomena that involve oscillating quantities, such as concentration of enzymes and substrates in biological processes[4] and cardiac electric waves. Sometimes the frequency of oscillation depends on, or is constrained (i.e., phase-locked or mode-locked, in some contexts) based on some quantity, and it is often of interest to study this relation. For instance, the outset of a tumor triggers in the area a series of substance (mainly proteins) oscillations that interact with each other; simulations show that these interactions cause Arnold tongues to appear, that is, the frequency of some oscillations constrain the others, and this can be used to control tumor growth.[3]


Other examples where Arnold tongues can be found include the inharmonicity of musical instruments, orbital resonance and tidal locking of orbiting moons, mode-locking in fiber optics and phase-locked loops and other electronic oscillators, as well as in cardiac rhythms, heart arrhythmias and cell cycle.[5]


One of the simplest physical models that exhibits mode-locking consists of two rotating disks connected by a weak spring. One disk is allowed to spin freely, and the other is driven by a motor. Mode locking occurs when the freely-spinning disk turns at a frequency that is a rational multiple of that of the driven rotator.


The simplest mathematical model that exhibits mode-locking is the circle map, which attempts to capture the motion of the spinning disks at discrete time intervals.

Synchronisation of a resonant [11]

tunneling diode oscillators

Arnold tongues have been applied to the study of

Sturmian word

"Circle Map". MathWorld.

Weisstein, Eric W.

Boyland, P.L. (1986). . Communications in Mathematical Physics. 106 (3): 353–381. Bibcode:1986CMaPh.106..353B. doi:10.1007/BF01207252. S2CID 121088353.

"Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals"

Gilmore, R.; Lefranc, M. (2002). The Topology of Chaos: Alice in Stretch and Squeezeland. John Wiley & Sons.  0-471-40816--6. - Provides a brief review of basic facts in section 2.12.

ISBN

; Guevara, M.R.; Shrier, A.; Perez, R. (1983). "Bifurcation and chaos in a periodically stimulated cardiac oscillator". Physica D: Nonlinear Phenomena. 7 (1–3): 89–101. Bibcode:1983PhyD....7...89G. doi:10.1016/0167-2789(83)90119-7. - Performs a detailed analysis of heart cardiac rhythms in the context of the circle map.

Glass, L.

McGuinness, M.; Hong, Y.; Galletly, D.; Larsen, P. (2004). "Arnold tongues in human cardiorespiratory systems". Chaos. 14 (1): 1–6. :2004Chaos..14....1M. doi:10.1063/1.1620990. PMID 15003038.

Bibcode

with interactive Java applet

Circle map