Description[edit]

In response to the operator's commands, the cognitive engine is capable of configuring radio-system parameters. These parameters include "waveform, protocol, operating frequency, and networking". This functions as an autonomous unit in the communications environment, exchanging information about the environment with the networks it accesses and other cognitive radios (CRs). A CR "monitors its own performance continuously", in addition to "reading the radio's outputs"; it then uses this information to "determine the RF environment, channel conditions, link performance, etc.", and adjusts the "radio's settings to deliver the required quality of service subject to an appropriate combination of user requirements, operational limitations, and regulatory constraints".


Some "smart radio" proposals combine wireless mesh network—dynamically changing the path messages take between two given nodes using cooperative diversity; cognitive radio—dynamically changing the frequency band used by messages between two consecutive nodes on the path; and software-defined radio—dynamically changing the protocol used by message between two consecutive nodes.

Full Cognitive Radio (Mitola radio), in which every possible parameter observable by a wireless node (or network) is considered.

[5]

Spectrum-Sensing Cognitive Radio, in which only the radio-frequency spectrum is considered.

Depending on transmission and reception parameters, there are two main types of cognitive radio:


Other types are dependent on parts of the spectrum available for cognitive radio:

Katana VentraIP

$_$_$DEEZ_NUTS#0__titleDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#0__subtitleDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#0__call_to_action.textDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#4__descriptionDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#1__titleDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#1__descriptionDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#3__descriptionDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#3__titleDEEZ_NUTS$_$_$

Power Control: Power control is usually used for spectrum sharing CR systems to maximize the capacity of secondary users with interference power constraints to protect the primary users.

[18]

Spectrum sensing

Matched filter

Wideband spectrum sensing

[24]

Null-space based CR: With the aid of multiple antennas, CR detects the null-space of the primary-user and then transmits within the null-space, such that its subsequent transmission causes less interference to the primary-user

Spectrum management

[26]

The application of CR networks to emergency and public safety communications by utilizing white space[33]

[32]

The potential of CR networks for executing dynamic spectrum access (DSA)[35]

[34]

Application of CR networks to military action such as chemical biological radiological and nuclear attack detection and investigation, command control, obtaining information of battle damage evaluations, battlefield surveillance, intelligence assistance, and targeting.

[36]

They are also proven to be helpful in establishing Medical Body Area Networks which can be utilized in omnipresent patient monitoring that aids in immediately notifying the doctors regarding vital information of patients such as sugar level, blood pressure, blood oxygen and electrocardiogram (ECG), etc. This gives the additional advantage of reducing the risk of infections and also increases the patient's mobility.

[23]

Cognitive radio is practical also to wireless sensor networks, where packet relaying can take place using primary and secondary queues to forward packets without delays and with minimum power consumption.

[37]

Cognitive Radio (CR) can sense its environment and, without the intervention of the user, can adapt to the user's communications needs while conforming to FCC rules in the United States. In theory, the amount of spectrum is infinite; practically, for propagation and other reasons it is finite because of the desirability of certain spectrum portions. Assigned spectrum is far from being fully utilized, and efficient spectrum use is a growing concern; CR offers a solution to this problem. A CR can intelligently detect whether any portion of the spectrum is in use, and can temporarily use it without interfering with the transmissions of other users.[31] According to Bruce Fette, "Some of the radio's other cognitive abilities include determining its location, sensing spectrum use by neighboring devices, changing frequency, adjusting output power or even altering transmission parameters and characteristics. All of these capabilities, and others yet to be realized, will provide wireless spectrum users with the ability to adapt to real-time spectrum conditions, offering regulators, licenses and the general public flexible, efficient and comprehensive use of the spectrum".


Examples of applications include:

$_$_$DEEZ_NUTS#5__titleDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#5__descriptionDEEZ_NUTS$_$_$

Future plans[edit]

The success of the unlicensed band in accommodating a range of wireless devices and services has led the FCC to consider opening further bands for unlicensed use. In contrast, the licensed bands are underutilized due to static frequency allocation. Realizing that CR technology has the potential to exploit the inefficiently utilized licensed bands without causing interference to incumbent users, the FCC released a Notice of Proposed Rule Making which would allow unlicensed radios to operate in the TV-broadcast bands. The IEEE 802.22 working group, formed in November 2004, is tasked with defining the air-interface standard for wireless regional area networks (based on CR sensing) for the operation of unlicensed devices in the spectrum allocated to TV service.[42] To comply with later FCC regulations on unlicensed utilization of TV spectrum, the IEEE 802.22 has defined interfaces to the mandatory TV White Space Database in order to avoid interference to incumbent services.[43] Although spectrum geolocation databases allow reducing the receiver complexity, and interference probability, for instance from sensing errors or hidden nodes, this comes at the cost of a lower spectrum utilization efficiency as the databases can not capture a fine-grained quantification of spectrum utilization and are not updated in real-time. Collaborative sensing, and distributed spectrum management based on artificial intelligence could contribute in the future towards a better balance between spectrum utilization efficiency and interference mitigation.[44]

Channel allocation schemes

Channel-dependent scheduling

Cognitive network

LTE Advanced

Network Simulator

OFDMA

(RRM)

Radio resource management

White spaces (radio)

White spaces (database)

Software-defined radio

 – first workshop on cognitive radio; its focus was mainly on research issues within the topic

Berkeley Wireless Research Center Cognitive Radio Workshop

Center for Wireless Telecommunications (CWT), Virginia Tech

 – Federal Communications Commission rules on cognitive radio

Cognitive Radio Technologies Proceeding of Federal Communications Commission

IEEE DySPAN Conference

$_$_$DEEZ_NUTS#6__titleDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#6__subtextDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#6__quote--0DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#6__name--0DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#6__company_or_position--0DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__titleDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__subtextDEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__quote--0DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__name--0DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__company_or_position--0DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__quote--1DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__name--1DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__company_or_position--1DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__quote--2DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__name--2DEEZ_NUTS$_$_$

$_$_$DEEZ_NUTS#2__company_or_position--2DEEZ_NUTS$_$_$