Coin flipping
Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives, heads or tails, sometimes used to resolve a dispute between two parties. It is a form of sortition which inherently has two possible outcomes. The party who calls the side that is facing up when the coin lands wins.
"Flipping a coin" and "Heads or tails" redirect here. For the song by Billlie, see The Billage of Perception: Chapter One. For other uses, see Heads or Tails (disambiguation). For Heads and Tails, see Heads and Tails.Politics[edit]
Australia[edit]
In December 2006, Australian television networks Seven and Ten, which shared the broadcasting of the 2007 AFL Season, decided who would broadcast the Grand Final with the toss of a coin. Network Ten won.[14]
Canada[edit]
In some jurisdictions, a coin is flipped to decide between two candidates who poll equal number of votes in an election, or two companies tendering equal prices for a project. For example, a coin toss decided a City of Toronto tender in 2003 for painting lines on 1,605 km of city streets: the bids were $161,110.00 ($100.3800623 per km), $146,584.65 ($91.33 per km, exactly), and two equal bids of $111,242.55 ($69.31 per km, exactly).
Philippines[edit]
"Drawing of lots" is one of the methods to break ties to determine a winner in an election; the coin flip is considered an acceptable variant. Each candidate will be given five chances to flip a coin; the candidate with the most "heads" wins. The 2013 mayoral election in San Teodoro, Oriental Mindoro was decided on a coin flip, with a winner being proclaimed after the second round when both candidates remained tied in the first round.[15]
United States[edit]
In the United States, when a new state is added to the Union, a coin toss determines the class of the senators (i.e., the election cycle in which the term each of the new state's senators will expire) in the US Senate.[18] Also, a number of states provide for "drawing lots" in the event an election ends in a tie, and this is usually resolved by a coin toss or picking names from a hat. A 2017 election to the 94th District of the Virginia House of Delegates resulted in a tie between Republican incumbent David Yancey and Democratic challenger Shelly Simmonds, with exactly 11,608 votes each. Under state law, the election was to be decided by drawing a name from a bowl, although a coin toss would also have been an acceptable option. The chair of the Board of Elections drew the film canister with Yancey's name, and he was declared the winner.[19] Additionally, the outcome of the draw determined control of the entire House, as Republicans won 50 of the other 99 seats and Democrats 49. A Yancey win extended the Republican advantage to 51–49, whereas a Simmonds win would have resulted in a 50–50 tie. As there is no provision for breaking ties in the House as a whole, this would have forced a power sharing agreement between the two parties.[20]
Physics[edit]
The outcome of coin flipping has been studied by the mathematician and former magician Persi Diaconis and his collaborators. They have demonstrated that a mechanical coin flipper which imparts the same initial conditions for every toss has a highly predictable outcome – the phase space is fairly regular. Further, in actual flipping, people exhibit slight bias – "coin tossing is fair to two decimals but not to three. That is, typical flips show biases such as 0.495 or 0.503."[21]
In studying coin flipping, to observe the rotation speed of coin flips, Diaconis first used a strobe light and a coin with one side painted black, the other white, so that when the speed of the strobe flash equaled the rotation rate of the coin, it would appear to always show the same side. This proved difficult to use, and rotation rate was more accurately computed by attaching floss to a coin, such that it would wind around the coin – after a flip, one could count rotations by unwinding the floss, and then compute rotation rate as flips over air time.[21]
Moreover, their theoretical analysis of the physics of coin tosses predicts a slight bias for a caught coin to be caught the same way up as it was thrown, with a probability of around 0.51,[22] though a subsequent attempt to verify this experimentally gave ambiguous results.[23] Stage magicians and gamblers, with practice, are able to greatly increase this bias, whilst still making throws which are visually indistinguishable from normal throws.[21]
Since the images on the two sides of actual coins are made of raised metal, the toss is likely to slightly favor one face or the other if the coin is allowed to roll on one edge upon landing. Coin spinning is much more likely to be biased than flipping, and conjurers trim the edges of coins so that when spun they usually land on a particular face.
$_$_$DEEZ_NUTS#0__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#0__subtitleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#0__call_to_action.textDEEZ_NUTS$_$_$$_$_$DEEZ_NUTS#2__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#2__descriptionDEEZ_NUTS$_$_$
Lotteries[edit]
The New Zealand lottery game Big Wednesday uses a coin toss. If a player matches all 6 of their numbers, the coin toss will decide whether they win a cash jackpot (minimum of NZ$25,000) or a bigger jackpot with luxury prizes (minimum of NZ$2 million cash, plus value of luxury prizes.) The coin toss is also used in determining the Second Chance winner's prize.
$_$_$DEEZ_NUTS#3__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#3__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#5__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#5__heading--0DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#5__description--0DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__heading--0DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__description--0DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__heading--1DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__description--1DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#7__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#7__subtextDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#6__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#6__subtextDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__subtextDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--0DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--1DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--2DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--3DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--4DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--5DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--6DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--7DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--8DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--9DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--10DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--11DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--12DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--13DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--14DEEZ_NUTS$_$_$