Katana VentraIP

Colors of noise

In audio engineering, electronics, physics, and many other fields, the color of noise or noise spectrum refers to the power spectrum of a noise signal (a signal produced by a stochastic process). Different colors of noise have significantly different properties. For example, as audio signals they will sound different to human ears, and as images they will have a visibly different texture. Therefore, each application typically requires noise of a specific color. This sense of 'color' for noise signals is similar to the concept of timbre in music (which is also called "tone color"; however, the latter is almost always used for sound, and may consider detailed features of the spectrum).

"Black noise" redirects here. For other uses, see Black Noise.

The practice of naming kinds of noise after colors started with white noise, a signal whose spectrum has equal power within any equal interval of frequencies. That name was given by analogy with white light, which was (incorrectly) assumed to have such a flat power spectrum over the visible range. Other color names, such as pink, red, and blue were then given to noise with other spectral profiles, often (but not always) in reference to the color of light with similar spectra. Some of those names have standard definitions in certain disciplines, while others are informal and poorly defined. Many of these definitions assume a signal with components at all frequencies, with a power spectral density per unit of bandwidth proportional to 1/f β and hence they are examples of power-law noise. For instance, the spectral density of white noise is flat (β = 0), while flicker or pink noise has β = 1, and Brownian noise has β = 2. Blue noise has β = -1.

A synonym for Brownian noise, as above.[17] That is, it is similar to pink noise, but with different spectral content and different relationships (i.e. 1/f for pink noise, while 1/f2 for red noise, or an decrease of 6.02 dB per octave).

[16]

In areas where terminology is used loosely, "red noise" may refer to any system where power density decreases with increasing frequency.

[18]

Generation[edit]

Colored noise can be computer-generated by first generating a white noise signal, Fourier-transforming it, then multiplying the amplitudes of the different frequency components with a frequency-dependent function.[26] Matlab programs are available to generate power-law colored noise in one or any number of dimensions.

(also known as the AC power hum)

Mains hum

Whittle likelihood

Some colored noise definitions

and True Grey Noise Generator

Online Colored Noise Generator

Black Noise and Population Persistence