Completions can also be used to analyze the local structure of singularities of a scheme. For example, the affine schemes associated to and the nodal cubic plane curve have similar looking singularities at the origin when viewing their graphs (both look like a plus sign). Notice that in the second case, any Zariski neighborhood of the origin is still an irreducible curve. If we use completions, then we are looking at a "small enough" neighborhood where the node has two components. Taking the localizations of these rings along the ideal and completing gives and respectively, where is the formal square root of in More explicitly, the power series:
Since both rings are given by the intersection of two ideals generated by a homogeneous degree 1 polynomial, we can see algebraically that the singularities "look" the same. This is because such a scheme is the union of two non-equal linear subspaces of the affine plane.