Katana VentraIP

Computer-supported cooperative work

Computer-supported cooperative work (CSCW) is the study of how people utilize technology collaboratively, often towards a shared goal. CSCW addresses how computer systems can support collaborative activity and coordination.[1] More specifically, the field of CSCW seeks to analyze and draw connections between currently understood human psychological and social behaviors and available collaborative tools, or groupware.[2] Often the goal of CSCW is to help promote and utilize technology in a collaborative way, and help create new tools to succeed in that goal. These parallels allow CSCW research to inform future design patterns or assist in the development of entirely new tools.

History[edit]

The origins of CSCW as a field are intertwined with the rise and subsequent fall of office automation as response to some of the criticisms, particularly the failure to address the impact human psychological and social behaviors can have.[3] Greif and Cashman created the term CSCW to help employees seeking to further their work with technology. A few years later, in 1987, Dr. Charles Findley presented the concept of Collaborative Learning-Work.[4] Computer-supported cooperative work is an interdisciplinary research area of growing interest which relates workstations to digitally advanced networking systems.[5] The first technologies were economically feasible, but their interoperability was lacking which makes understanding a well-tailored supporting system difficult. Due to global markets, more organizations are being pushed to decentralize their corporate systems. When faced with the complexities of today's business issues, a significant effort must be made to improve manufacturing systems' efficiency, improve product quality, and reduce time to market.


The idea of CSCW or computer-supported cooperative work has become useful over the years since its inception and most especially in the ongoing crisis of the COVID-19 pandemic. The measures to mitigate the virus’ spread have led to firm closures and increased the rates of remote working and learning. People now share a common workspace, hold virtual meetings, see and hear each other's movements and voices in a common virtual workspace with a group-centered design. Only when advanced and generic methods are combined does a CSCW framework seem complete to the consumer. For decades, CSCW studies have been proposed using a variety of technologies to promote collaborative work, ranging from shared data services to video-mediated networks for synchronous operations. Among the various domains of CSCW, the Audio/Video Conference Module (AVM) has become useful in enabling audiovisual communication via the online applications used to discuss and undertake work operations such as Zoom and EzTalks.

Awareness: individuals working together need to be able to gain some level of shared knowledge about each other's activities.

[6]

Articulation work: cooperating individuals must be able to partition work into units, divide it amongst themselves and, after the work is performed, reintegrate it.[8]

[7]

Appropriation (or tailorability): how an individual or group adapts a technology to their own particular situation; the technology may be appropriated in a manner completely unintended by the designers.[10][11]

[9]

Applications[edit]

Applications in education[edit]

There have been three main generations to distance education, starting with the first being through postal service, the second through mass media such as the radio, television, and films, and the third being the current state of e-learning.[34] Technology-enhanced learning, or “e-learning”, has been an increasingly relevant topic in education, especially with the development of the COVID-19 pandemic that has caused many schools to switch to remote learning.[35] E-learning is defined as "the use of technology to support and enhance learning practice". It includes the utilization of many different types of information and communication technologies (ICTs) and is limited to the use of intranet and internet in the teaching and learning process.[36] The development of content is mainly through using learning objectives to create activities through Virtual Learning Environments, Content Management Systems, and Learning Management Systems.[36] These technologies have created massive change in their use as CSCW tools, allowing students and teachers to work on the same platforms and have a shared online space in which to communicate in. The delivery of content can be either asynchronous, such as email and discussion forums, or synchronous, like through chat or video conferencing.[36] Synchronous education allows for much more equal interaction between students and instructors and better communication between students for the facilitation of group projects and assignments.[37]

Challenges[edit]

Social - technical gap[edit]

The success of CSCW systems is often so contingent on the social context that it is difficult to generalize. Consequently, CSCW systems that are based on the design of successful ones may fail to be appropriated in other seemingly similar contexts for a variety of reasons that are nearly impossible to identify a priori.[3] CSCW researcher Mark Ackerman calls this "divide between what we know we must support socially and what we can support technically" the social-technical gap and describes CSCW's main research agenda to be "exploring, understanding, and hopefully ameliorating" this gap.[58]


It is important to analyze ‘what we know we must support socially’ for a few reasons. The way interaction takes place within an in-person setting is something that cannot be easily changed unlike the way technology is able to be manipulated to fit specific needs today. There are certain norms and standards lived up to within peoples’ day to day lives, a certain part of those norms and attitudes carry over into the online world. The problem is mimicking daily communication styles and behavior into an online setting. Schmidt examines this concept within “Mind the Gap”, he states “Cooperative work is a tricky phenomenon. We are all engaged in cooperative activities of various sorts in our everyday lives and routinely observe others working together around us. We are all experts from our everyday experience. And yet this quotidian insight can be utterly misleading when applied to the design of systems to support cooperative work”.[59] Though in-person communication on a day-to-day basis is natural for most, it does not easily translate over into cooperative work. This highlights the need for adaptability within CSCW systems, Schmidt expands on the “crucial requirement of flexibility that arises from the changing needs of the cooperative work setting”.[59] These all tie together to highlight the gaps within CSCW.

Leadership[edit]

Generally, teams working in a CSCW environment need the same types of leadership as non-CSCW teams. However, research has shown that distributed CSCW teams may need more direction at the time the group is formed than traditional working groups, largely to promote cohesion and liking among people who may not have as many opportunities to interact in person, both before and after the formation of the working group.[60]

Diversity, equity, and inclusion in CSCW[edit]

Gender and CSCW[edit]

In computer-supported cooperative work, there are small psychological differences between how men and women approach CSCW programs.[73] This can lead to unintentionally biased systems, due to the majority of software being designed and tested by men. As well, in systems where societal gender differences are not accounted for and countered, men tend to overrepresent women in these online spaces.[74] This can lead to women feeling potentially alienated and unfairly targeted by CSCW programs.


In recent years, more studies have been conducted on how men and women interact with each other using CSCW systems. Findings do not indicate that men and women have performance difference when performing CSCW tasks, but rather that each gender approaches and interacts with software and performs CSCW tasks differently. In most findings, men were more likely to explore potential choices and willing to take risks compared to women.[74] In group tasks, women in general were more conservative in voicing their opinions and suggestions on tasks when paired with a male, but inversely were very communicative when paired with another woman. As well, men are found to be more likely to take control of group activities and teamwork, even from a young age,[73] leading to further ostracizing of women speaking up in CSCW group work. Additionally, in CSCW message boards, men on average posted more messages and engaged more frequently than their female counterparts.[75]

Conferences[edit]

Since 2010, the Association for Computing Machinery (ACM) has hosted a yearly conference on CSCW. From 1986 to 2010, it was held biannually.[78] The conference is currently held in October or November and features research in the design and use of technologies that affect organizational and group work. With the rapidly increasing development of new devices that allow collaboration from different locations and contexts, CSCW seeks to bring together researchers from across academia and industry to discuss the many facets of virtual collaboration from both social and technical perspectives.


Internationally, the Institute of Electrical and Electronics Engineers (IEEE) sponsors the International Conference on Computer Supported Work in Design, which takes place yearly.[79] In addition, the European Society for Socially Embedded Technologies sponsors the European Conference on Computer Supported Cooperative Work, which has been held every two years since 1989.[80] CSCW panels are a regular component of conferences of the adjacent field of Science and Technology Studies.

ACM CSCW Conference Series

CSCW Conference

European CSCW Conference Series

European CSCW Conference Foundation

GROUP Conference

COOP Conference