Katana VentraIP

Congruence (geometry)

In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.[1]

More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted.


In elementary geometry the word congruent is often used as follows.[2] The word equal is often used in place of congruent for these objects.


In this sense, two plane figures are congruent implies that their corresponding characteristics are "congruent" or "equal" including not just their corresponding sides and angles, but also their corresponding diagonals, perimeters, and areas.


The related concept of similarity applies if the objects have the same shape but do not necessarily have the same size. (Most definitions consider congruence to be a form of similarity, although a minority require that the objects have different sizes in order to qualify as similar.)

First, match and label the corresponding vertices of the two figures.

Second, draw a vector from one of the vertices of one of the figures to the corresponding vertex of the other figure. Translate the first figure by this vector so that these two vertices match.

Third, rotate the translated figure about the matched vertex until one pair of matches.

corresponding sides

Fourth, reflect the rotated figure about this matched side until the figures match.

For two polygons to be congruent, they must have an equal number of sides (and hence an equal number—the same number—of vertices). Two polygons with n sides are congruent if and only if they each have numerically identical sequences (even if clockwise for one polygon and counterclockwise for the other) side-angle-side-angle-... for n sides and n angles.


Congruence of polygons can be established graphically as follows:


If at any time the step cannot be completed, the polygons are not congruent.

SAS (side-angle-side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then the triangles are congruent.

SSS (side-side-side): If three pairs of sides of two triangles are equal in length, then the triangles are congruent.

ASA (angle-side-angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent.

Definition of congruence in analytic geometry

In a Euclidean system, congruence is fundamental; it is the counterpart of equality for numbers. In analytic geometry, congruence may be defined intuitively thus: two mappings of figures onto one Cartesian coordinate system are congruent if and only if, for any two points in the first mapping, the Euclidean distance between them is equal to the Euclidean distance between the corresponding points in the second mapping.


A more formal definition states that two subsets A and B of Euclidean space Rn are called congruent if there exists an isometry f : RnRn (an element of the Euclidean group E(n)) with f(A) = B. Congruence is an equivalence relation.

Congruent conic sections

Two conic sections are congruent if their eccentricities and one other distinct parameter characterizing them are equal. Their eccentricities establish their shapes, equality of which is sufficient to establish similarity, and the second parameter then establishes size. Since two circles, parabolas, or rectangular hyperbolas always have the same eccentricity (specifically 0 in the case of circles, 1 in the case of parabolas, and in the case of rectangular hyperbolas), two circles, parabolas, or rectangular hyperbolas need to have only one other common parameter value, establishing their size, for them to be congruent.

Congruent polyhedra

For two polyhedra with the same combinatorial type (that is, the same number E of edges, the same number of faces, and the same number of sides on corresponding faces), there exists a set of E measurements that can establish whether or not the polyhedra are congruent.[7][8] The number is tight, meaning that less than E measurements are not enough if the polyhedra are generic among their combinatorial type. But less measurements can work for special cases. For example, cubes have 12 edges, but 9 measurements are enough to decide if a polyhedron of that combinatorial type is congruent to a given regular cube.

Notation

A symbol commonly used for congruence is an equals symbol with a tilde above it, , corresponding to the Unicode character 'approximately equal to' (U+2245). In the UK, the three-bar equal sign (U+2261) is sometimes used.

Euclidean plane isometry

Isometry

at Cut-the-Knot

The SSS

at Cut-the-Knot

The SSA

Interactive animations demonstrating , Congruent angles, Congruent line segments, Congruent triangles at Math Open Reference

Congruent polygons