Katana VentraIP

Momentum

In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p (from Latin pellere "push, drive") is:

This article is about linear momentum. Not to be confused with angular momentum or moment (physics).

Momentum

p, p

kg⋅m/s

Yes

In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is dimensionally equivalent to the newton-second.


Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total linear momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics, quantum field theory, and general relativity. It is an expression of one of the fundamental symmetries of space and time: translational symmetry.


Advanced formulations of classical mechanics, Lagrangian and Hamiltonian mechanics, allow one to choose coordinate systems that incorporate symmetries and constraints. In these systems the conserved quantity is generalized momentum, and in general this is different from the kinetic momentum defined above. The concept of generalized momentum is carried over into quantum mechanics, where it becomes an operator on a wave function. The momentum and position operators are related by the Heisenberg uncertainty principle.


In continuous systems such as electromagnetic fields, fluid dynamics and deformable bodies, a momentum density can be defined, and a continuum version of the conservation of momentum leads to equations such as the Navier–Stokes equations for fluids or the Cauchy momentum equation for deformable solids or fluids.

Electromagnetic

Particle in a field

In Maxwell's equations, the forces between particles are mediated by electric and magnetic fields. The electromagnetic force (Lorentz force) on a particle with charge q due to a combination of electric field E and magnetic field B is





(in SI units).[38]: 2  It has an electric potential φ(r, t) and magnetic vector potential A(r, t).[29] In the non-relativistic regime, its generalized momentum is





while in relativistic mechanics this becomes





The quantity V = qA is sometimes called the potential momentum.[39][40][41] It is the momentum due to the interaction of the particle with the electromagnetic fields. The name is an analogy with the potential energy U = qφ, which is the energy due to the interaction of the particle with the electromagnetic fields. These quantities form a four-vector, so the analogy is consistent; besides, the concept of potential momentum is important in explaining the so-called hidden momentum of the electromagnetic fields.[42]

Conservation

In Newtonian mechanics, the law of conservation of momentum can be derived from the law of action and reaction, which states that every force has a reciprocating equal and opposite force. Under some circumstances, moving charged particles can exert forces on each other in non-opposite directions.[43] Nevertheless, the combined momentum of the particles and the electromagnetic field is conserved.

Media related to Momentum at Wikimedia Commons

– A chapter from an online textbook

Conservation of momentum