Katana VentraIP

Cryptic female choice

Cryptic female choice is a form of mate choice which occurs both in pre and post copulatory circumstances when females in certain species use physical or chemical mechanisms to control a male's success of fertilizing their ova or ovum; i.e. by selecting whether sperm are successful in fertilizing their eggs or not. It occurs in internally-fertilizing species and involves differential use of sperm by females when sperm are available in the reproductive tract.

The present understanding of cryptic female choice is largely thanks to the extensive research and analysis done by William G. Eberhard. The term ‘cryptic’ according to Eberhard is meant to describe an internal and thereby hidden choice some female organisms are able to make following insemination with regards to sperm selection.[1]: 7–9  In male species with intromittent organs, during copulation, a male inserts his reproductive organ into that of a female's so as to inseminate her with his genetic material. Through the development of mechanisms that either prematurely inhibit copulation or act following male insemination, females are able to prevent undesirable males from successfully fertilizing their eggs.[1]: 5  Thus, not every copulatory event is successful – there are many factors that combine to determine whether or not an offspring is created. It is likely that cryptic female choice is a consequence of the conflict between the reproductive desires of males and females.[1]: 22  While males commonly increase their reproductive success by maximally fertilizing each female they mate with, females can incur costs to their personal health as a result of such behavior. Cryptic female choice reduces these costs by allowing them to also benefit from and select for favorable matings.

Theory[edit]

Females not only exert sexual control but also benefit from exerting such control over male reproductive success. It has been observed that in some species males continue to court females following copulation, which illuminates the fact above. This female control compels males to continue to impress their female counterparts following copulation.[2] The assumption above can be made because there is an energetic cost for a male to continue to court a female following insemination because he has to invest energy to do so. And, because there is an energetic investment he must benefit in some way. As such, sexual selection does not only act on traits that influence female mate choice of males but it also acts on male traits that determine his success following copulation.


There are circumstances in nature in which a male's interaction with a female is of detriment to her personal well-being and that of her offspring, one such situation, sexual coercion, occurs when a male harasses a female prior to copulation. In such circumstances where the female's lifespan and fertility are compromised, it benefits females to develop evasive mechanisms.[1]: 23  In addition, in some species where multiple males inseminate a female, a female is able to select the most desirable sperm for her offspring by rejecting that which she desires less.[1]: 233  In both of the aforementioned situations it is a female's reproductive actions that affect male reproductive success following copulation.[1]: 3–7  As discussed below, female species that are able to use cryptic choice have developed various mechanisms to manipulate male reproductive success. Species that are able to use cryptic choice only use one of the below mechanisms to do so. Regardless of the mechanism, this ability allows females to respond differently to conspecific males depending on whether the male that inseminates her is favorable to her or not.[1]: 5 

: Among species that mate multiple times, studies have shown much greater divergence in genital morphology than in species who mate singly. The rapid evolution of internal female and male reproductive morphology is due to the high sexual selection pressures characteristic of polygamous populations. In such cases, females can use cryptic female choice in choosing for or resisting males with specific physical or anatomical traits.[1]: 22  Duck genitalia and anatomical evolution is a prime example of this male-female conflict through evolution of internal anatomical barriers.[3]

Antagonistic coevolution

Coevolution: Female cryptic choice may also act indirectly by choosing for males with subtle secondary sexual traits that may cater to easier insemination and mating. In these instances female cooperation during the mating process is crucial for male success. For example, in the yellow fever mosquito, successful copulation requires a multistep process with a cooperative and receptive female.: 97  In the Caribbean fruit fly, males must display a specific calling song to induce female cooperation which allows the male to penetrate the female deeply, increasing his chances of success.[1]: 101 

[1]