Cubic equation
In algebra, a cubic equation in one variable is an equation of the form
This article is about cubic equations in one variable. For cubic equations in two variables, see cubic plane curve.
in which a is nonzero.
The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means:
The coefficients do not need to be real numbers. Much of what is covered below is valid for coefficients in any field with characteristic other than 2 and 3. The solutions of the cubic equation do not necessarily belong to the same field as the coefficients. For example, some cubic equations with rational coefficients have roots that are irrational (and even non-real) complex numbers.
Trigonometric and hyperbolic solutions[edit]
Trigonometric solution for three real roots[edit]
When a cubic equation with real coefficients has three real roots, the formulas expressing these roots in terms of radicals involve complex numbers. Galois theory allows proving that when the three roots are real, and none is rational (casus irreducibilis), one cannot express the roots in terms of real radicals. Nevertheless, purely real expressions of the solutions may be obtained using trigonometric functions, specifically in terms of cosines and arccosines.[25] More precisely, the roots of the depressed cubic