Katana VentraIP

David Marr (neuroscientist)

David Courtenay Marr (19 January 1945 – 17 November 1980)[1] was a British neuroscientist and physiologist. Marr integrated results from psychology, artificial intelligence, and neurophysiology into new models of visual processing. His work was very influential in computational neuroscience and led to a resurgence of interest in the discipline.

Biography[edit]

Born in Woodford, Essex, and educated at Rugby School; he was admitted at Trinity College, Cambridge on 1 October 1963 (having been awarded an Open Scholarship and the Lees Knowles Rugby Exhibition).


He was awarded the Coutts Trotter Scholarship in 1966 and obtained his BA in mathematics the same year. He was elected a Research Fellow of Trinity College, Cambridge in 1968. His doctoral dissertation, supervised by Giles Brindley, was submitted in 1969 and described his model of the function of the cerebellum based mainly on anatomical and physiological data garnered from a book by J.C. Eccles. His interest turned from general brain theory to visual processing. Subsequently, he worked at the Massachusetts Institute of Technology, where he took on a faculty appointment in the Department of Psychology in 1977 and was subsequently made a tenured full professor in 1980. Marr proposed that understanding the brain requires an understanding of the problems it faces and the solutions it finds. He emphasised the need to avoid general theoretical debates and instead focus on understanding specific problems.


Marr died of leukemia in Cambridge, Massachusetts, at the age of 35. His findings are collected in the book Vision: A computational investigation into the human representation and processing of visual information, which was finished mainly in the summer of 1979, was published in 1982 after his death and re-issued in 2010 by The MIT Press. This book had a key role in the beginning and rapid growth of computational neuroscience field.[2] He was married to Lucia M. Vaina of Boston University's Department of Biomedical Engineering and Neurology.


There are various academic awards and prizes named in his honour. The Marr Prize, one of the most prestigious awards in computer vision, the David Marr Medal awarded every two years by the Applied Vision Association in the UK,[3] and the Cognitive Science Society also awards a Marr Prize for the best student paper at its annual conference.

Work[edit]

Theories of cerebellum, hippocampus, and neocortex[edit]

Marr is best known for his work on vision, but before he began work on that topic he published three seminal papers proposing computational theories of the cerebellum (in 1969), neocortex (in 1970), and hippocampus (in 1971). Each of those papers presented important new ideas that continue to influence modern theoretical thinking.


The cerebellum theory[4] was motivated by two unique features of cerebellar anatomy: (1) the cerebellum contains vast numbers of tiny granule cells, each receiving only a few inputs from "mossy fibers"; (2) Purkinje cells in the cerebellar cortex each receive tens of thousands of inputs from "parallel fibers", but only one input from a single "climbing fiber", which however is extremely strong. Marr proposed that the granule cells encode combinations of mossy fibre inputs, and that the climbing fibres carry a "teaching" signal that instructs their Purkinje cell targets to modify the strength of synaptic connections from parallel fibres.


The theory of neocortex[5] was primarily motivated by the discoveries of David Hubel and Torsten Wiesel, who found several types of "feature detectors" in the primary visual area of the cortex. Marr proposed, generalising on that observation, that cells in the neocortex are flexible categorizers—that is, they learn the statistical structure of their input patterns and become sensitive to combinations that are frequently repeated.


The theory of hippocampus[6] (which Marr called "archicortex") was motivated by the discovery by William Scoville and Brenda Milner that destruction of the hippocampus produced amnesia for memories of new or recent events but left intact memories of events that had occurred years earlier. Marr called his theory "simple memory": the basic idea was that the hippocampus could rapidly form memory traces of a simple type by strengthening connections between neurons. Remarkably, Marr's paper only preceded by two years a paper by Tim Bliss and Terje Lømo that provided the first clear report of long-term potentiation in the hippocampus, a type of synaptic plasticity very similar to what Marr hypothesized.[7] (Marr's paper contains a footnote mentioning a preliminary report of that discovery.[8]) The details of Marr's theory are no longer of great value because of errors in his understanding of hippocampal anatomy, but the basic concept of the hippocampus as a temporary memory system remains in a number of modern theories.[9] At the end of his paper Marr promised a follow-up paper on the relations between the hippocampus and neocortex, but no such paper ever appeared.

High and low level (description)

Marr Prize

Level of analysis

(1969) "A theory of cerebellar cortex." J. Physiol., 202:437–470.

(1970) "A theory for cerebral neocortex." Proceedings of the Royal Society of London B, 176:161–234.

(1971) "Simple memory: a theory for archicortex." Phil. Trans. Royal Soc. London, 262:23–81.

(1974) "The computation of lightness by the primate retina." Vision Research, 14:1377–1388.

(1975) "Approaches to biological information processing." Science, 190:875–876.

(1976) "Early processing of visual information." Phil. Trans. R. Soc. Lond. B, 275:483–524.

(1976) "Cooperative computation of stereo disparity." Science, 194:283–287. (with Tomaso Poggio)

(March 1976) "Artificial intelligence: A personal view." Technical Report AIM 355, MIT AI Laboratory, Cambridge, MA.

(1977) "Artificial intelligence: A personal view." Artificial Intelligence 9(1), 37–48.

(1977) "From understanding computation to understanding neural circuitry." Neurosciences Res. Prog. Bull., 15:470–488. (with Tomaso Poggio)

(1978) "Representation and recognition of the spatial organization of three dimensional shapes." Proceedings of the Royal Society of London B, 200:269–294. (with H. K. Nishihara)

(1979) "A computational theory of human stereo vision." Proceedings of the Royal Society of London B, 204:301–328. (with Tomaso Poggio)

(1980) "Theory of edge detection." Proc. R. Soc. Lond. B, 207:187–217. (with E. Hildreth)

(1981) "Artificial intelligence: a personal view." In Haugeland, J., ed., Mind Design, chapter 4, pages 129–142. MIT Press, Cambridge, MA.

(1982) "Representation and recognition of the movements of shapes." Proceedings of the Royal Society of London B, 214:501–524. (with L. M. Vaina)

(1982) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W. H. Freeman and Company.  0-7167-1284-9. (In 2010, MIT press re-published the book with a foreword from Shimon Ullman and an afterword from Tomaso Poggio under ISBN 9780262514620.)

ISBN

Vaina, L. M., ed. (1990). From the retina to the neocortex: selected papers of David Marr. Boston, MA: Birkhauser.

Vaina, Lucia M.; Passingham, Richard E., eds. (2016). . Oxford University Press. doi:10.1093/acprof:oso/9780198749783.001.0001. ISBN 978-0-19-874978-3.

Computational Theories and their Implementation in the Brain: The legacy of David Marr

Extensive online biography