Katana VentraIP

Dependent and independent variables

A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question.[a] In this sense, some common independent variables are time, space, density, mass, fluid flow rate,[1][2] and previous values of some observed value of interest (e.g. human population size) to predict future values (the dependent variable).[3]

For dependent and independent random variables, see Independence (probability theory).

Of the two, it is always the dependent variable whose variation is being studied, by altering inputs, also known as regressors in a statistical context. In an experiment, any variable that can be attributed a value without attributing a value to any other variable is called an independent variable. Models and experiments test the effects that the independent variables have on the dependent variables. Sometimes, even if their influence is not of direct interest, independent variables may be included for other reasons, such as to account for their potential confounding effect.

In pure mathematics[edit]

In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers)[5] and providing an output (which may also be a number).[5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable.[6] The most common symbol for the input is x, and the most common symbol for the output is y; the function itself is commonly written y = f(x).[6][7]


It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables.[8] Functions with multiple outputs are often referred to as vector-valued functions.

Effect of fertilizer on plant growths:

Abscissa and ordinate

Blocking (statistics)

Latent and observable variables