Eddy (fluid dynamics)
In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime.[2] The moving fluid creates a space devoid of downstream-flowing fluid on the downstream side of the object. Fluid behind the obstacle flows into the void creating a swirl of fluid on each edge of the obstacle, followed by a short reverse flow of fluid behind the obstacle flowing upstream, toward the back of the obstacle. This phenomenon is naturally observed behind large emergent rocks in swift-flowing rivers.
An eddy is a movement of fluid that deviates from the general flow of the fluid. An example for an eddy is a vortex which produces such deviation. However, there are other types of eddies that are not simple vortices. For example, a Rossby wave is an eddy[3] which is an undulation that is a deviation from mean flow, but does not have the local closed streamlines of a vortex.
Research and development[edit]
Computational fluid dynamics[edit]
These are turbulence models in which the Reynolds stresses, as obtained from a Reynolds averaging of the Navier–Stokes equations, are modelled by a linear constitutive relationship with the mean flow straining field, as: