Effects of climate change on the water cycle
The effects of climate change on the water cycle are profound and have been described as an intensification or a strengthening of the water cycle (also called hydrologic cycle).[2]: 1079 This effect has been observed since at least 1980.[2]: 1079 One example is when heavy rain events become even stronger. The effects of climate change on the water cycle have important negative effects on the availability of freshwater resources, as well as other water reservoirs such as oceans, ice sheets, the atmosphere and soil moisture. The water cycle is essential to life on Earth and plays a large role in the global climate system and ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons.[3] For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.
The underlying cause of the intensifying water cycle is the increased amount of greenhouse gases in the atmosphere, which lead to a warmer atmosphere through the greenhouse effect.[3] Fundamental laws of physics explain how the saturation vapor pressure in the atmosphere increases by 7% when temperature rises by 1 °C.[4] This relationship is known as the Clausius-Clapeyron equation.
The strength of the water cycle and its changes over time are of considerable interest, especially as the climate changes.[5] The hydrological cycle is a system whereby the evaporation of moisture in one place leads to precipitation (rain or snow) in another place. For example, evaporation always exceeds precipitation over the oceans. This allows moisture to be transported by the atmosphere from the oceans onto land where precipitation exceeds evapotranspiration. The runoff from the land flows into streams and rivers and discharges into the ocean, which completes the global cycle.[5] The water cycle is a key part of Earth's energy cycle through the evaporative cooling at the surface which provides latent heat to the atmosphere, as atmospheric systems play a primary role in moving heat upward.[5]
The availability of water plays a major role in determining where the extra heat goes. It can go either into evaporation or into air temperature increases. If water is available (like over the oceans and the tropics), extra heat goes mostly into evaporation. If water is not available (like over dry areas on land), the extra heat goes into raising air temperature.[6] Also, the water holding capacity of the atmosphere increases proportionally with temperature increase. For these reasons, the temperature increases dominate in the Arctic (polar amplification) and on land but not over the oceans and the tropics.[6]
Several inherent characteristics have the potential to cause sudden (abrupt) changes in the water cycle.[7]: 1148 However, the likelihood that such changes will occur during the 21st century is currently regarded as low.[7]: 72