Katana VentraIP

Electronic waste

Electronic waste (or e-waste) describes discarded electrical or electronic devices. It is also commonly known as waste electrical and electronic equipment (WEEE) or end-of-life (EOL) electronics.[1] Used electronics which are destined for refurbishment, reuse, resale, salvage recycling through material recovery, or disposal are also considered e-waste. Informal processing of e-waste in developing countries can lead to adverse human health effects and environmental pollution.[2] The growing consumption of electronic goods due to the Digital Revolution and innovations in science and technology, such as bitcoin, has led to a global e-waste problem and hazard. The rapid exponential increase of e-waste is due to frequent new model releases and unnecessary purchases of electrical and electronic equipment (EEE), short innovation cycles and low recycling rates, and a drop in the average life span of computers.[3]

Electronic scrap components, such as CPUs, contain potentially harmful materials such as lead, cadmium, beryllium, or brominated flame retardants. Recycling and disposal of e-waste may involve significant risk to the health of workers and their communities.[4]

(MARPOL) (73/78/97)[41]

International Convention for the Prevention of Pollution from Ships

(1989)[42]

Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal

on Ozone Depleting Substances (1989)[43]

Montreal Protocol

concerning safety in the use of chemicals at work (1990)[44]

International Labour Organization (ILO) Convention on Chemicals

Organisation for Economic Cooperation and Development (OECD), Council Decision Waste Agreement (1992)

United Nations Framework Convention on Climate Change (UNFCCC) (1994)

International Conference on Chemicals Management (ICCM) (1995)

Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (1998)

(2001)[45]

Stockholm Convention on Persistent Organic Pollutants

World Health Organisation (WHO), World Health Assembly Resolutions (2006–2016)

Archived 23 January 2020 at the Wayback Machine

Hong Kong International Convention for the Safe and Environmentally Sound Recycling of Ships (2009)

(2013)[46]

Minamata Convention on Mercury

(2015) under the United Nations Framework Convention on Climate Change[47]

Paris Climate Agreement

Connect 2020 Agenda for Global Telecommunication/ICT Development (2014)

Exported (1.5 million tons),

Recycled under non-compliant conditions in Europe (3.15 million tons),

Scavenged for valuable parts (750,000 tons), or

Simply thrown in waste bins (750,000 tons).

[65]

Airborne – one type found at 100 times levels previously measured

dioxins

Levels of in duck ponds and rice paddies exceeded international standards for agricultural areas and cadmium, copper, nickel, and lead levels in rice paddies were above international standards

carcinogens

found in road dust – lead over 300 times that of a control village's road dust and copper over 100 times

Heavy metals

The processes of dismantling and disposing of electronic waste in developing countries led to a number of environmental impacts as illustrated in the graphic. Liquid and atmospheric releases end up in bodies of water, groundwater, soil, and air and therefore in land and sea animals – both domesticated and wild, in crops eaten by both animals and humans, and in drinking water.[79]


One study of environmental effects in Guiyu, China found the following:[14]


The Agbogbloshie area of Ghana, where about 40,000 people live, provides an example of how e-waste contamination can pervade the daily lives of nearly all residents. Into this area—one of the largest informal e-waste dumping and processing sites in Africa—about 215,000 tons of secondhand consumer electronics, primarily from Western Europe, are imported annually. Because this region has considerable overlap among industrial, commercial, and residential zones, Pure Earth (formerly Blacksmith Institute) has ranked Agbogbloshie as one of the world's 10 worst toxic threats (Blacksmith Institute 2013).[80]


A separate study at the Agbogbloshie e-waste dump, Ghana found a presence of lead levels as high as 18,125 ppm in the soil.[81] US EPA standard for lead in soil in play areas is 400 ppm and 1200 ppm for non-play areas.[82] Scrap workers at the Agbogbloshie e-waste dump regularly burn electronic components and auto harness wires for copper recovery,[83] releasing toxic chemicals like lead, dioxins and furans[84] into the environment.


Researchers such as Brett Robinson, a professor of soil and physical sciences at Lincoln University in New Zealand, warn that wind patterns in Southeast China disperse toxic particles released by open-air burning across the Pearl River Delta Region, home to 45 million people. In this way, toxic chemicals from e-waste enter the "soil-crop-food pathway," one of the most significant routes for heavy metals' exposure to humans. These chemicals are not biodegradable— they persist in the environment for long periods of time, increasing exposure risk.[85]


In the agricultural district of Chachoengsao, in the east of Bangkok, local villagers had lost their main water source as a result of e-waste dumping. The cassava fields were transformed in late 2017, when a nearby Chinese-run factory started bringing in foreign e-waste items such as crushed computers, circuit boards and cables for recycling to mine the electronics for valuable metal components like copper, silver and gold. But the items also contain lead, cadmium and mercury, which are highly toxic if mishandled during processing. Apart from feeling faint from noxious fumes emitted during processing, a local claimed the factory has also contaminated her water. "When it was raining, the water went through the pile of waste and passed our house and went into the soil and water system. Water tests conducted in the province by environmental group Earth and the local government both found toxic levels of iron, manganese, lead, nickel and in some cases arsenic and cadmium. The communities observed when they used water from the shallow well, there was some development of skin disease or there are foul smells", founder of Earth, Penchom Saetang, said: "This is proof, that it is true, as the communities suspected, there are problems happening to their water sources."[86]


Depending on the age and type of the discarded item, the chemical composition of e-waste may vary. Most e-waste are composed of a mixture of metals like Cu, Al and Fe. They might be attached to, covered with or even mixed with various types of plastics and ceramics. E-waste has a horrible effect on the environment and it is important to dispose it with an R2 certifies recycling facility.[88]

Research[edit]

In May 2020, a scientific study was conducted in China that investigated the occurrence and distribution of traditional and novel classes of contaminants, including chlorinated, brominated, and mixed halogenated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs, PBDD/Fs, PXDD/Fs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and polyhalogenated carbazoles (PHCZs) in soil from an e-waste disposal site in Hangzhou (which has been in operation since 2009 and has a treatment capacity of 19.6 Wt/a). While the study area has only one formal emission source, the broader industrial zone has a number of metal recovery and reprocessing plants as well as heavy traffic on adjacent motorways where normal and heavy-duty devices are used. The maximum concentrations of the target halogenated organic compounds HOCs were 0.1–1.5 km away from the main source and overall detected levels of HOCs were generally lower than those reported globally. The study proved what researchers have warned, i. e. on highways with heavy traffic, especially those serving diesel powered vehicles, exhaust emissions are larger sources of dioxins than stationary sources. When assessing the environmental and health impacts of chemical compounds, especially PBDD/Fs and PXDD/Fs, the compositional complexity of soil and long period weather conditions like rain and downwind have to be taken into account. Further investigations are necessary to build up a common understanding and methods for assessing e-waste impacts.[89]

Information security[edit]

Discarded data processing equipment may still contain readable data that may be considered sensitive to the previous users of the device. A recycling plan for such equipment can support information security by ensuring proper steps are followed to erase the sensitive information. This may include such steps as re-formatting of storage media and overwriting with random data to make data unrecoverable, or even physical destruction of media by shredding and incineration to ensure all data is obliterated. For example, on many operating systems deleting a file may still leave the physical data file intact on the media, allowing data retrieval by routine methods.

Repair as waste reduction method[edit]

There are several ways to curb the environmental hazards arising from the recycling of electronic waste. One of the factors which exacerbate the e-waste problem is the diminishing lifetime of many electrical and electronic goods. There are two drivers (in particular) for this trend. On the one hand, consumer demand for low cost products militates against product quality and results in short product lifetimes.[120] On the other, manufacturers in some sectors encourage a regular upgrade cycle, and may even enforce it though restricted availability of spare parts, service manuals and software updates, or through planned obsolescence.


Consumer dissatisfaction with this state of affairs has led to a growing repair movement. Often, this is at a community level such as through repair cafės or the "restart parties" promoted by the Restart Project.[121]


The right to repair is spearheaded in the US by farmers dissatisfied with non-availability of service information, specialised tools and spare parts for their high-tech farm machinery. But the movement extends far beyond farm machinery with, for example, the restricted repair options offered by Apple coming in for criticism. Manufacturers often counter with safety concerns resulting from unauthorised repairs and modifications.[122]


An easy method of reducing electronic waste footprint is to sell or donate electronic gadgets, rather than dispose of them. Improperly disposed e-waste is becoming more and more hazardous, especially as the sheer volume of e-waste increases. For this reason, large brands like Apple, Samsung, and others have started giving options to customers to recycle old electronics. Recycling allows the expensive electronic parts inside to be reused. This may save significant energy and reduce the need for mining of additional raw resources, or manufacture of new components. Electronic recycling programs may be found locally in many areas with a simple online search; for example, by searching "recycle electronics" along with the city or area name.


Cloud services have proven to be useful in storing data, which is then accessible from anywhere in the world without the need to carry storage devices. Cloud storage also allows for large storage, at low cost. This offers convenience, while reducing the need for manufacture of new storage devices, thus curbing the amount of e-waste generated.[123]

Electronic waste classification[edit]

The market has a lot of different types of electrical products. To categorize these products, it is necessary to group them into sensible and practical categories. Classification of the products may even help to determine the process to be used for disposal of the product. Making the classifications, in general, is helping to describe e-waste. Classifications has not defined special details, for example when they do not pose a threat to the environment. On the other hand, classifications should not be too aggregated because of countries differences in interpretation.[124] The UNU-KEYs system closely follows the harmonized statistical (HS) coding. It is an international nomenclature which is an integrated system to allow classify common basis for customs purposes.[124]

Human health and safety[edit]

Residents living near recycling sites[edit]

Residents living around the e-waste recycling sites, even if they do not involve in e-waste recycling activities, can also face the environmental exposure due to the food, water, and environmental contamination caused by e-waste, because they can easily contact to e-waste contaminated air, water, soil, dust, and food sources. In general, there are three main exposure pathways: inhalation, ingestion, and dermal contact.[141]


Studies show that people living around e-waste recycling sites have a higher daily intake of heavy metals and a more serious body burden. Potential health risks include mental health, impaired cognitive function, and general physical health damage[142] (see also Electronic waste#Hazardous). DNA damage was also found more prevalent in all the e-waste exposed populations (i.e. adults, children, and neonates) than the populations in the control area.[142] DNA breaks can increase the likelihood of wrong replication and thus mutation, as well as lead to cancer if the damage is to a tumor suppressor gene.[132]

2000s commodities boom

Computer Recycling

Digger gold

eDay

Electronic waste in Japan

Green computing

Mobile phone recycling

Material safety data sheet

Polychlorinated biphenyls

Retrocomputing

Radio Row

Policy and conventions:


Security:


General:

Hicks, C.; Dietmara, R.; Eugsterb, M. (2005). "The recycling and disposal of electrical and electronic waste in China—legislative and market responses". Environmental Impact Assessment Review. 25 (5): 459–471. :10.1016/j.eiar.2005.04.007. ISSN 0195-9255.

doi

; Schoenung, J. M.; Saphores, J-D. M.; Shapiro, A. A. (2009). "The Electronics Revolution: From E-Wonderland to E-Wasteland". Science. 326 (5953): 670–671. doi:10.1126/science.1176929. PMID 19900918. S2CID 33860709.

Ogunseitan, O. A.

Toxics Link (February 2003). . India. Archived from the original on 19 July 2011. Retrieved 25 March 2011.

"Scrapping the Hi-tech Myth: Computer waste in India"

Cheng, I-Hwa, E-waste Trafficking: From Your Home to China

Li, J.; Zeng, X.; Chen, M.; Ogunseitan, O.A.; Stevels, A. (2015). . Environmental Science & Technology. 49 (12): 7095–7108. Bibcode:2015EnST...49.7095L. doi:10.1021/acs.est.5b00449. PMID 26007633. S2CID 13177934.

""Control-Alt-Delete": Rebooting Solutions for the E-Waste Problem"

United Nations University (2 June 2020). (PDF). Global E-waste Statistics Partnership. ISBN 978-92-808-9114-0. Retrieved 2 July 2020. (13 MB PDF)

The Global E-waste Monitor 2020 Quantities, flows and the circular economy potential 2020

Shiani A, Sharafi K, Omer AK, Kiani A, Karamimatin B, Massahi T, Ebrahimzadeh G (January 2023). "A systematic literature review on the association between exposures to toxic elements and an autism spectrum disorder". Sci Total Environ. 857 (Pt 2): 159246. :10.1016/j.scitotenv.2022.159246. PMID 36220469. S2CID 252769951.

doi

Carroll, Chris (January 2008). . National Geographic Society. Archived from the original on 18 March 2008.

"High-Tech Trash"

Sustainable Management of Electronics

MOOC: Massive Online Open Course "Waste Management and Critical Raw Materials" on (amongst others) recycling and reuse of electronics.