Element (mathematics)
In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set.
For elements in category theory, see Element (category theory).Sets[edit]
Writing means that the elements of the set A are the numbers 1, 2, 3 and 4. Sets of elements of A, for example , are subsets of A.
Sets can themselves be elements. For example, consider the set . The elements of B are not 1, 2, 3, and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set .
The elements of a set can be anything. For example, is the set whose elements are the colors red, green and blue.
In logical terms, (x ∈ y) ↔ (∀x[Px = y] : x ∈ 𝔇y).
Using the sets defined above, namely A = {1, 2, 3, 4}, B = {1, 2, {3, 4}} and C = {red, green, blue}, the following statements are true:
Formal relation[edit]
As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted U. The range is the set of subsets of U called the power set of U and denoted P(U). Thus the relation is a subset of U x P(U). The converse relation is a subset of P(U) x U.