Katana VentraIP

Fault (geology)

In geology, a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults.[1] Energy release associated with rapid movement on active faults is the cause of most earthquakes. Faults may also displace slowly, by aseismic creep.[2]

"Fault line" redirects here. For other uses, see Fault line (disambiguation).

A fault plane is the plane that represents the fracture surface of a fault. A fault trace or fault line is a place where the fault can be seen or mapped on the surface. A fault trace is also the line commonly plotted on geologic maps to represent a fault.[3][4]


A fault zone is a cluster of parallel faults.[5][6] However, the term is also used for the zone of crushed rock along a single fault.[7] Prolonged motion along closely spaced faults can blur the distinction, as the rock between the faults is converted to fault-bound lenses of rock and then progressively crushed.[8]

Hanging wall and footwall[edit]

The two sides of a non-vertical fault are known as the hanging wall and footwall. The hanging wall occurs above the fault plane and the footwall occurs below it.[14] This terminology comes from mining: when working a tabular ore body, the miner stood with the footwall under his feet and with the hanging wall above him.[15] These terms are important for distinguishing different dip-slip fault types: reverse faults and normal faults. In a reverse fault, the hanging wall displaces upward, while in a normal fault the hanging wall displaces downward. Distinguishing between these two fault types is important for determining the stress regime of the fault movement.

strike-slip, where the offset is predominantly horizontal, parallel to the fault trace;

dip-slip, offset is predominantly vertical and/or perpendicular to the fault trace; or

oblique-slip, combining strike-slip and dip-slip.

Cataclasite

fault breccia

– a fault rock which is cohesive and characterized by a well-developed planar fabric resulting from tectonic reduction of grain size, and commonly containing rounded porphyroclasts and rock fragments of similar composition to minerals in the matrix

Mylonite

– ultrafine-grained glassy-looking material, usually black and flinty in appearance, occurring as thin planar veins, injection veins or as a matrix to pseudoconglomerates or breccias, which infills dilation fractures in the host rock. Pseudotachylyte likely only forms as the result of seismic slip rates and can act as a fault rate indicator on inactive faults.[26]

Pseudotachylyte

All faults have a measurable thickness, made up of deformed rock characteristic of the level in the crust where the faulting happened, of the rock types affected by the fault and of the presence and nature of any mineralising fluids. Fault rocks are classified by their textures and the implied mechanism of deformation. A fault that passes through different levels of the lithosphere will have many different types of fault rock developed along its surface. Continued dip-slip displacement tends to juxtapose fault rocks characteristic of different crustal levels, with varying degrees of overprinting. This effect is particularly clear in the case of detachment faults and major thrust faults.


The main types of fault rock include:

Impacts on structures and people[edit]

In geotechnical engineering, a fault often forms a discontinuity that may have a large influence on the mechanical behavior (strength, deformation, etc.) of soil and rock masses in, for example, tunnel, foundation, or slope construction.


The level of a fault's activity can be critical for (1) locating buildings, tanks, and pipelines and (2) assessing the seismic shaking and tsunami hazard to infrastructure and people in the vicinity. In California, for example, new building construction has been prohibited directly on or near faults that have moved within the Holocene Epoch (the last 11,700 years) of the Earth's geological history.[27] Also, faults that have shown movement during the Holocene plus Pleistocene Epochs (the last 2.6 million years) may receive consideration, especially for critical structures such as power plants, dams, hospitals, and schools. Geologists assess a fault's age by studying soil features seen in shallow excavations and geomorphology seen in aerial photographs. Subsurface clues include shears and their relationships to carbonate nodules, eroded clay, and iron oxide mineralization, in the case of older soil, and lack of such signs in the case of younger soil. Radiocarbon dating of organic material buried next to or over a fault shear is often critical in distinguishing active from inactive faults. From such relationships, paleoseismologists can estimate the sizes of past earthquakes over the past several hundred years, and develop rough projections of future fault activity.

Faults and ore deposits[edit]

Many ore deposits lie on or are associated with faults. This is because the fractured rock associated with fault zones allow for magma ascent[28] or the circulation of mineral-bearing fluids. Intersections of near-vertical faults are often locations of significant ore deposits.[29]


An example of a fault hosting valuable porphyry copper deposits is northern Chile's Domeyko Fault with deposits at Chuquicamata, Collahuasi, El Abra, El Salvador, La Escondida and Potrerillos.[30] Further south in Chile Los Bronces and El Teniente porphyry copper deposit lie each at the intersection of two fault systems.[29]


Faults may not always act as conduits to surface. It has been proposed that deep-seated "misoriented" faults may instead be zones where magmas forming porphyry copper stagnate achieving the right time for—and type of—igneous differentiation.[31] At a given time differentiated magmas would burst violently out of the fault-traps and head to shallower places in the crust where porphyry copper deposits would be formed.[31]

Groundwater[edit]

As faults are zones of weakness, they facilitate the interaction of water with the surrounding rock and enhance chemical weathering. The enhanced chemical weathering increases the size of the weathered zone and hence creates more space for groundwater.[32] Fault zones act as aquifers and also assist groundwater transport.

List of fault zones

Anderson's theory of faulting

Aseismic creep

 – Large blocks of rock created by tectonic and localized stresses in Earth's crust

Fault block

 – Small vertical offset on the ground surface

Fault scarp

 – Type of fracture in rock

Joint

Mitigation of seismic motion

 – Geological processes that underlie the formation of mountains

Mountain formation

 – The formation of mountain ranges

Orogeny

Paleostress inversion

 – Probability that an earthquake will occur in a given geographic area, within a given window of time

Seismic hazard

 – Groove, created by a geological process, on the surface of a rock or a mineral

Striation

– Vertical movement of Earth's crust

Vertical displacement

Davis, George H.; Reynolds, Stephen J. (1996). . Structural Geology of Rocks and Regions (2nd ed.). John Wiley & Sons. pp. 372–424. ISBN 0-471-52621-5.

"Folds"

at IRIS Consortium (archived 17 February 2005)

Fault Motion Animations

at USGS

Aerial view of the San Andreas fault in the Carrizo Plain, Central California, from "How Earthquakes Happen"

at USGS (archived 4 April 2008)

LANDSAT image of the San Andreas Fault in southern California, from "What is a Fault?"