Symplectic field theory (SFT)[edit]

This is an invariant of contact manifolds and symplectic cobordisms between them, originally due to Yakov Eliashberg, Alexander Givental and Helmut Hofer. The symplectic field theory as well as its subcomplexes, rational symplectic field theory and contact homology, are defined as homologies of differential algebras, which are generated by closed orbits of the Reeb vector field of a chosen contact form. The differential counts certain holomorphic curves in the cylinder over the contact manifold, where the trivial examples are the branched coverings of (trivial) cylinders over closed Reeb orbits. It further includes a linear homology theory, called cylindrical or linearized contact homology (sometimes, by abuse of notation, just contact homology), whose chain groups are vector spaces generated by closed orbits and whose differentials count only holomorphic cylinders. However, cylindrical contact homology is not always defined due to the presence of holomorphic discs and a lack of regularity and transversality results. In situations where cylindrical contact homology makes sense, it may be seen as the (slightly modified) Morse homology of the action functional on the free loop space, which sends a loop to the integral of the contact form alpha over the loop. Reeb orbits are the critical points of this functional.


SFT also associates a relative invariant of a Legendrian submanifold of a contact manifold known as relative contact homology. Its generators are Reeb chords, which are trajectories of the Reeb vector field beginning and ending on a Lagrangian, and its differential counts certain holomorphic strips in the symplectization of the contact manifold whose ends are asymptotic to given Reeb chords.


In SFT the contact manifolds can be replaced by mapping tori of symplectic manifolds with symplectomorphisms. While the cylindrical contact homology is well-defined and given by the symplectic Floer homologies of powers of the symplectomorphism, (rational) symplectic field theory and contact homology can be considered as generalized symplectic Floer homologies. In the important case when the symplectomorphism is the time-one map of a time-dependent Hamiltonian, it was however shown that these higher invariants do not contain any further information.

Floer homotopy[edit]

One conceivable way to construct a Floer homology theory of some object would be to construct a related spectrum whose ordinary homology is the desired Floer homology. Applying other homology theories to such a spectrum could yield other interesting invariants. This strategy was proposed by Ralph Cohen, John Jones, and Graeme Segal, and carried out in certain cases for Seiberg–Witten–Floer homology by Manolescu (2003) and for the symplectic Floer homology of cotangent bundles by Cohen. This approach was the basis of Manolescu's 2013 construction of Pin (2)-equivariant Seiberg–Witten Floer homology, with which he disproved the Triangulation Conjecture for manifolds of dimension 5 and higher.

Analytic foundations[edit]

Many of these Floer homologies have not been completely and rigorously constructed, and many conjectural equivalences have not been proved. Technical difficulties come up in the analysis involved, especially in constructing compactified moduli spaces of pseudoholomorphic curves. Hofer, in collaboration with Kris Wysocki and Eduard Zehnder, has developed new analytic foundations via their theory of polyfolds and a "general Fredholm theory". While the polyfold project is not yet fully completed, in some important cases transversality was shown using simpler methods.

Computation[edit]

Floer homologies are generally difficult to compute explicitly. For instance, the symplectic Floer homology for all surface symplectomorphisms was completed only in 2007. The Heegaard Floer homology has been a success story in this regard: researchers have exploited its algebraic structure to compute it for various classes of 3-manifolds and have found combinatorial algorithms for computation of much of the theory. It is also connected to existing invariants and structures and many insights into 3-manifold topology have resulted.

(1988). "New invariants of 3- and 4-dimensional manifolds". The Mathematical Heritage of Hermann Weyl. Proceedings of Symposia in Pure Mathematics. Vol. 48. pp. 285–299. doi:10.1090/pspum/048/974342. ISBN 9780821814826.

Atiyah, Michael

; David Hurtubise (2004). Lectures on Morse Homology. Kluwer Academic Publishers. ISBN 978-1-4020-2695-9.

Augustin Banyaga

; M. Furuta; D. Kotschick (2002). Floer homology groups in Yang–Mills theory. Cambridge Tracts in Mathematics. Vol. 147. Cambridge University Press. ISBN 978-0-521-80803-3.

Simon Donaldson

Ellwood, David A.; ; Stipsicz, András I.; Szabó, Zoltán, eds. (2006). Floer Homology, Gauge Theory, And Low-dimensional Topology. Clay Mathematics Proceedings. Vol. 5. Clay Mathematics Institute. ISBN 978-0-8218-3845-7.

Ozsváth, Peter S.

; Mrowka, Tomasz (2007). Monopoles and Three-Manifolds. Cambridge University Press. ISBN 978-0-521-88022-0.

Kronheimer, Peter

; Salamon, Dietmar (1998). Introduction to Symplectic Topology. Oxford University Press. ISBN 978-0-19-850451-1.

McDuff, Dusa

Schwarz, Matthias (2012) [1993]. . Progress in Mathematics. Vol. 111. Birkhäuser. ISBN 978-3-0348-8577-5.

Morse Homology

(2008). Fukaya Categories and Picard Lefschetz Theory. European Mathematical Society. ISBN 978-3037190630.

Seidel, Paul

, Encyclopedia of Mathematics, EMS Press, 2001 [1994]

"Atiyah-Floer conjecture"

"", The Knot Atlas.

Heegaard Floer Knot Homology