Forensic science
Forensic science, also known as criminalistics,[1] is the application of science principles and methods to support legal decision-making in matters of criminal and civil law.
"Forensics" redirects here. For the fields of speech and debate, see Public speaking and Debate.
During criminal investigation in particular, it is governed by the legal standards of admissible evidence and criminal procedure. It is a broad field utilizing numerous practices such as the analysis of DNA, fingerprints, bloodstain patterns, firearms, ballistics, toxicology, and fire debris analysis.
Forensic scientists collect, preserve, and analyze evidence during the course of an investigation. While some forensic scientists travel to the scene of the crime to collect the evidence themselves, others occupy a laboratory role, performing analysis on objects brought to them by other individuals.[2] Others are involved in analysis of financial, banking, or other numerical data for use in financial crime investigation, and can be employed as consultants from private firms, academia, or as government employees.[3]
In addition to their laboratory role, forensic scientists testify as expert witnesses in both criminal and civil cases and can work for either the prosecution or the defense. While any field could technically be forensic, certain sections have developed over time to encompass the majority of forensically related cases.[4]
Etymology[edit]
The term forensic stems from the Latin word, forēnsis (3rd declension, adjective), meaning "of a forum, place of assembly".[5] The history of the term originates in Roman times, when a criminal charge meant presenting the case before a group of public individuals in the forum. Both the person accused of the crime and the accuser would give speeches based on their sides of the story. The case would be decided in favor of the individual with the best argument and delivery. This origin is the source of the two modern usages of the word forensic—as a form of legal evidence; and as a category of public presentation.[6]
In modern use, the term forensics is often used in place of "forensic science."
The word "science", is derived from the Latin word for 'knowledge' and is today closely tied to the scientific method, a systematic way of acquiring knowledge. Taken together, forensic science means the use of scientific methods and processes for crime solving.
Some forensic techniques, believed to be scientifically sound at the time they were used, have turned out later to have much less scientific merit or none.[89] Some such techniques include:
Litigation science[edit]
"Litigation science" describes analysis or data developed or produced expressly for use in a trial versus those produced in the course of independent research. This distinction was made by the U.S. 9th Circuit Court of Appeals when evaluating the admissibility of experts.[98]
This uses demonstrative evidence, which is evidence created in preparation of trial by attorneys or paralegals.
Media impact[edit]
Real-life crime scene investigators and forensic scientists warn that popular television shows do not give a realistic picture of the work, often wildly distorting its nature, and exaggerating the ease, speed, effectiveness, drama, glamour, influence and comfort level of their jobs—which they describe as far more mundane, tedious and boring.[100][101]
Some claim these modern TV shows have changed individuals' expectations of forensic science, sometimes unrealistically—an influence termed the "CSI effect".[102][103]
Further, research has suggested that public misperceptions about criminal forensics can create, in the mind of a juror, unrealistic expectations of forensic evidence—which they expect to see before convicting—implicitly biasing the juror towards the defendant. Citing the "CSI effect," at least one researcher has suggested screening jurors for their level of influence from such TV programs.[103]
Controversies[edit]
Questions about certain areas of forensic science, such as fingerprint evidence and the assumptions behind these disciplines have been brought to light in some publications[104][105] including the New York Post.[106] The article stated that "No one has proved even the basic assumption: That everyone's fingerprint is unique."[106] The article also stated that "Now such assumptions are being questioned—and with it may come a radical change in how forensic science is used by police departments and prosecutors."[106] Law professor Jessica Gabel said on NOVA that forensic science "lacks the rigors, the standards, the quality controls and procedures that we find, usually, in science".[107]
The National Institute of Standards and Technology has reviewed the scientific foundations of bite-mark analysis used in forensic science. Bite mark analysis is a forensic science technique that analyzes the marks on the victim's skin compared to the suspects teeth. [108] NIST reviewed the findings of the National Academies of Sciences, Engineering, and Medicine 2009 study. The National Academics of Sciences, Engineering, and Medicine conducted research to address the issues of reliability, accuracy, and reliability of bitemark analysis, where they concluded that there is a lack of sufficient scientific foundation to support the data.[109] Yet the technique is still legal to use in court as evidence. NIST funded a 2019 meeting that consisted of dentists, lawyers, researchers and others to address the gaps in this field. [110]
In the US, on 25 June 2009, the Supreme Court issued a 5-to-4 decision in Melendez-Diaz v. Massachusetts stating that crime laboratory reports may not be used against criminal defendants at trial unless the analysts responsible for creating them give testimony and subject themselves to cross-examination.[111] The Supreme Court cited the National Academies of Sciences report Strengthening Forensic Science in the United States[112] in their decision. Writing for the majority, Justice Antonin Scalia referred to the National Research Council report in his assertion that "Forensic evidence is not uniquely immune from the risk of manipulation."
In the US, another area of forensic science that has come under question in recent years is the lack of laws requiring the accreditation of forensic labs. Some states require accreditation, but some states do not. Because of this,[113][114] many labs have been caught performing very poor work resulting in false convictions or acquittals. For example, it was discovered after an audit of the Houston Police Department in 2002 that the lab had fabricated evidence which led George Rodriguez being convicted of raping a fourteen-year-old girl.[115] The former director of the lab, when asked, said that the total number of cases that could have been contaminated by improper work could be in the range of 5,000 to 10,000.[115]
The Innocence Project[116] database of DNA exonerations shows that many wrongful convictions contained forensic science errors. According to the Innocence project and the US Department of Justice, forensic science has contributed to about 39 percent to 46 percent of wrongful convictions. [117] As indicated by the National Academy of Sciences report Strengthening Forensic Sciences in the United States,[112] part of the problem is that many traditional forensic sciences have never been empirically validated; and part of the problem is that all examiners are subject to forensic confirmation biases and should be shielded from contextual information not relevant to the judgment they make.
Many studies have discovered a difference in rape-related injuries reporting based on race, with white victims reporting a higher frequency of injuries than black victims.[118] However, since current forensic examination techniques may not be sensitive to all injuries across a range of skin colors, more research needs to be conducted to understand if this trend is due to skin confounding healthcare providers when examining injuries or if darker skin extends a protective element.[118] In clinical practice, for patients with darker skin, one study recommends that attention must be paid to the thighs, labia majora, posterior fourchette and fossa navicularis, so that no rape-related injuries are missed upon close examination.[118]
Forensic science and humanitarian work[edit]
The International Committee of the Red Cross (ICRC) uses forensic science for humanitarian purposes to clarify the fate of missing persons after armed conflict, disasters or migration,[119] and is one of the services related to Restoring Family Links and Missing Persons. Knowing what has happened to a missing relative can often make it easier to proceed with the grieving process and move on with life for families of missing persons.
Forensic science is used by various other organizations to clarify the fate and whereabouts of persons who have gone missing. Examples include the NGO Argentine Forensic Anthropology Team, working to clarify the fate of people who disappeared during the period of the 1976–1983 military dictatorship. The International Commission on Missing Persons (ICMP) used forensic science to find missing persons,[120] for example after the conflicts in the Balkans.[121]
Recognising the role of forensic science for humanitarian purposes, as well as the importance of forensic investigations in fulfilling the state's responsibilities to investigate human rights violations, a group of experts in the late-1980s devised a UN Manual on the Prevention and Investigation of Extra-Legal, Arbitrary and Summary Executions, which became known as the Minnesota Protocol. This document was revised and re-published by the Office of the High Commissioner for Human Rights in 2016.[122]