Gödel numbering for sequences
In mathematics, a Gödel numbering for sequences provides an effective way to represent each finite sequence of natural numbers as a single natural number. While a set theoretical embedding is surely possible, the emphasis is on the effectiveness of the functions manipulating such representations of sequences: the operations on sequences (accessing individual members, concatenation) can be "implemented" using total recursive functions, and in fact by primitive recursive functions.
It is usually used to build sequential “data types” in arithmetic-based formalizations of some fundamental notions of mathematics. It is a specific case of the more general idea of Gödel numbering. For example, recursive function theory can be regarded as a formalization of the notion of an algorithm, and can be regarded as a programming language to mimic lists by encoding a sequence of natural numbers in a single natural number.[1][2]