Gauss sums can be used to prove , cubic reciprocity, and quartic reciprocity.

quadratic reciprocity

Gauss sums can be used to calculate the number of solutions of polynomial equations over finite fields, and thus can be used to calculate certain zeta functions.

Quadratic Gauss sum

Elliptic Gauss sum

Jacobi sum

Kummer sum

Kloosterman sum

Gaussian period

Hasse–Davenport relation

Chowla–Mordell theorem

Stickelberger's theorem

(1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001

Apostol, Tom M.

; Evans, R. J.; Williams, K. S. (1998). Gauss and Jacobi Sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley. ISBN 0-471-12807-4. Zbl 0906.11001.

Berndt, B. C.

Ireland, Kenneth; Rosen, Michael (1990). A Classical Introduction to Modern Number Theory. . Vol. 84 (2nd ed.). Springer-Verlag. ISBN 0-387-97329-X. Zbl 0712.11001.

Graduate Texts in Mathematics

Section 3.4 of ; Kowalski, Emmanuel (2004), Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, Providence, RI: American Mathematical Society, ISBN 978-0-8218-3633-0, MR 2061214, Zbl 1059.11001

Iwaniec, Henryk