Generating set of a group
In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.
In other words, if is a subset of a group , then , the subgroup generated by , is the smallest subgroup of containing every element of , which is equal to the intersection over all subgroups containing the elements of ; equivalently, is the subgroup of all elements of that can be expressed as the finite product of elements in and their inverses. (Note that inverses are only needed if the group is infinite; in a finite group, the inverse of an element can be expressed as a power of that element.)
If , then we say that generates , and the elements in are called generators or group generators. If is the empty set, then is the trivial group , since we consider the empty product to be the identity.
When there is only a single element in , is usually written as . In this case, is the cyclic subgroup of the powers of , a cyclic group, and we say this group is generated by . Equivalent to saying an element generates a group is saying that equals the entire group . For finite groups, it is also equivalent to saying that has order .
A group may need an infinite number of generators. For example the additive group of rational numbers is not finitely generated. It is generated by the inverses of all the integers, but any finite number of these generators can be removed from the generating set without it ceasing to be a generating set. In a case like this, all the elements in a generating set are nevertheless "non-generating elements", as are in fact all the elements of the whole group − see Frattini subgroup below.
If is a topological group then a subset of is called a set of topological generators if is dense in , i.e. the closure of is the whole group .
Frattini subgroup[edit]
An interesting companion topic is that of non-generators. An element of the group is a non-generator if every set containing that generates , still generates when is removed from . In the integers with addition, the only non-generator is 0. The set of all non-generators forms a subgroup of , the Frattini subgroup.
Semigroups and monoids[edit]
If is a semigroup or a monoid, one can still use the notion of a generating set of . is a semigroup/monoid generating set of if is the smallest semigroup/monoid containing .
The definitions of generating set of a group using finite sums, given above, must be slightly modified when one deals with semigroups or monoids. Indeed, this definition should not use the notion of inverse operation anymore. The set is said to be a semigroup generating set of if each element of is a finite sum of elements of . Similarly, a set is said to be a monoid generating set of if each non-zero element of is a finite sum of elements of .
For example, {1} is a monoid generator of the set of natural numbers . The set {1} is also a semigroup generator of the positive natural numbers . However, the integer 0 can not be expressed as a (non-empty) sum of 1s, thus {1} is not a semigroup generator of the natural numbers.
Similarly, while {1} is a group generator of the set of integers , {1} is not a monoid generator of the set of integers. Indeed, the integer −1 cannot be expressed as a finite sum of 1s.