Katana VentraIP

Geometric function theory

Geometric function theory is the study of geometric properties of analytic functions. A fundamental result in the theory is the Riemann mapping theorem.

Important theorems[edit]

Riemann mapping theorem[edit]

Let be a point in a simply-connected region and having at least two boundary points. Then there exists a unique analytic function mapping bijectively into the open unit disk such that and .


Although Riemann's mapping theorem demonstrates the existence of a mapping function, it does not actually exhibit this function. An example is given below.


In the above figure, consider and as two simply connected regions different from . The Riemann mapping theorem provides the existence of mapping onto the unit disk and existence of mapping onto the unit disk. Thus is a one-to-one mapping of onto . If we can show that , and consequently the composition, is analytic, we then have a conformal mapping of onto , proving "any two simply connected regions different from the whole plane can be mapped conformally onto each other."

(1935), "Zur Theorie der Überlagerungsflächen", Acta Mathematica (in German), 65 (1): 157–194, doi:10.1007/BF02420945, ISSN 0001-5962, JFM 61.0365.03, Zbl 0012.17204.

Ahlfors, Lars

(1928), "Über einige Extremalprobleme der konformen Abbildung. I, II.", Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe (in German), 80: 367–376, 497–502, JFM 54.0378.01.

Grötzsch, Herbert

Hurwitz-Courant, Vorlesunger über allgemeine Funcktionen Theorie, 1922 (4th ed., appendix by H. Röhrl, vol. 3, Grundlehren der mathematischen Wissenschaften. Springer, 1964.)

Krantz, Steven (2006). Geometric Function Theory: Explorations in Complex Analysis. Springer.  0-8176-4339-7.

ISBN

Bulboacă, T.; Cho, N. E.; Kanas, S. A. R. (2012). (PDF). International Journal of Mathematics and Mathematical Sciences. 2012: 1–2. doi:10.1155/2012/976374.

"New Trends in Geometric Function Theory 2011"

Ahlfors, Lars (2010). Conformal Invariants: Topics in Geometric Function Theory. AMS Chelsea Publishing.  978-0821852705.

ISBN