HIV vaccine development
An HIV vaccine is a potential vaccine that could be either a preventive vaccine or a therapeutic vaccine, which means it would either protect individuals from being infected with HIV or treat HIV-infected individuals.
It is thought that an HIV vaccine could either induce an immune response against HIV (active vaccination approach) or consist of preformed antibodies against HIV (passive vaccination approach).[1]
Two active vaccine regimens, studied in the RV 144 and Imbokodo trials, showed they can prevent HIV in some individuals.
However, the protection was in relatively few individuals, and was not long lasting. For these reasons, no HIV vaccines have been licensed for the market yet.
Economics[edit]
A July 2012 report of the HIV Vaccines & Microbicides Resource Tracking Working Group estimates that $845 million was invested in HIV vaccine research in 2011.[44]
Economic issues with developing an HIV vaccine include the need for advance purchase commitment (or advance market commitments) because after an AIDS vaccine has been developed, governments and NGOs may be able to bid the price down to marginal cost.[45]
Future work[edit]
There have been reports that HIV patients coinfected with GB virus C (GBV-C), also called hepatitis G virus, can survive longer than those without GBV-C, but the patients may be different in other ways. GBV-C is potentially useful in the future development of an HIV vaccine.[51]
Live attenuated vaccines are highly successful against polio, rotavirus and measles, but have not been tested against HIV in humans. Reversion to live virus has been a theoretical safety concern that has to date prevented clinical development of a live attenuated HIV-1 vaccine. Scientists are researching novel strategies to develop a non-virulent live attenuated HIV-1 vaccine. For example, a genetically modified form of HIV has been created in which the virus's codons (a sequence of three nucleotides that form genetic code) are manipulated to rely on an unnatural amino acid for proper protein translation, which allows it to replicate. Because this amino acid is foreign to the human body, the virus cannot reproduce.[52] Recent evidence suggests using universal CAR NK cells against HIV[53][54]