Katana VentraIP

Ham sandwich theorem

In mathematical measure theory, for every positive integer n the ham sandwich theorem states that given n measurable "objects" in n-dimensional Euclidean space, it is possible to divide each one of them in half (with respect to their measure, e.g. volume) with a single (n − 1)-dimensional hyperplane. This is even possible if the objects overlap.

Not to be confused with the squeeze theorem (sometimes called the "sandwich theorem").

It was proposed by Hugo Steinhaus and proved by Stefan Banach (explicitly in dimension 3, without taking the trouble to state the theorem in the n-dimensional case), and also years later called the Stone–Tukey theorem after Arthur H. Stone and John Tukey.

History[edit]

According to Beyer & Zardecki (2004), the earliest known paper about the ham sandwich theorem, specifically the n = 3 case of bisecting three solids with a plane, is a 1938 note in a Polish mathematics journal (Editors 1938). Beyer and Zardecki's paper includes a translation of this note, which attributes the posing of the problem to Hugo Steinhaus, and credits Stefan Banach as the first to solve the problem, by a reduction to the Borsuk–Ulam theorem. The note poses the problem in two ways: first, formally, as "Is it always possible to bisect three solids, arbitrarily located, with the aid of an appropriate plane?" and second, informally, as "Can we place a piece of ham under a meat cutter so that meat, bone, and fat are cut in halves?" The note then offers a proof of the theorem.


A more modern reference is Stone & Tukey (1942), which is the basis of the name "Stone–Tukey theorem". This paper proves the n-dimensional version of the theorem in a more general setting involving measures. The paper attributes the n = 3 case to Stanislaw Ulam, based on information from a referee; but Beyer & Zardecki (2004) claim that this is incorrect, given the note mentioned above, although "Ulam did make a fundamental contribution in proposing" the Borsuk–Ulam theorem.

Measure theoretic versions[edit]

In measure theory, Stone & Tukey (1942) proved two more general forms of the ham sandwich theorem. Both versions concern the bisection of n subsets X1, X2, ..., Xn of a common set X, where X has a Carathéodory outer measure and each Xi has finite outer measure.


Their first general formulation is as follows: for any continuous real function , there is a point p of the n-sphere Sn and a real number s0 such that the surface f(p,x) = s0 divides X into f(p,x) < s0 and f(p,x) > s0 of equal measure and simultaneously bisects the outer measure of X1, X2, ..., Xn. The proof is again a reduction to the Borsuk-Ulam theorem. This theorem generalizes the standard ham sandwich theorem by letting f(s,x) = s1x1 + ... + snxn.


Their second formulation is as follows: for any n + 1 measurable functions f0, f1, ..., fn over X that are linearly independent over any subset of X of positive measure, there is a linear combination f = a0f0 + a1f1 + ... + anfn such that the surface f(x) = 0, dividing X into f(x) < 0 and f(x) > 0, simultaneously bisects the outer measure of X1, X2, ..., Xn. This theorem generalizes the standard ham sandwich theorem by letting f0(x) = 1 and letting fi(x), for i > 0, be the i-th coordinate of x.

Exact division

Beyer, W. A.; Zardecki, Andrew (2004), , American Mathematical Monthly, 111 (1): 58–61, doi:10.2307/4145019, JSTOR 4145019, ProQuest 203746537.

"The early history of the ham sandwich theorem"

Cairns, Stewart S. (Spring 1963), "Networks, ham sandwiches, and putty", Pi Mu Epsilon Journal, 3 (8): 389–403,  24338222.

JSTOR

; Spanier, E. H. (January 1961), "How to cut a cake fairly", American Mathematical Monthly, 68 (1P1): 1–17, doi:10.1080/00029890.1961.11989615

Dubins, L. E.

; Waupotitsch, R. (1986), "Computing a ham sandwich cut in two dimensions", Journal of Symbolic Computation, 2 (2): 171–178, doi:10.1016/S0747-7171(86)80020-7.

Edelsbrunner, Herbert

Lo, Chi-Yuan; Steiger, W. L. (1990), "An optimal time algorithm for ham-sandwich cuts in the plane", Proceedings of the Second Canadian Conference on Computational Geometry, pp. 5–9.

Lo, Chi-Yuan; ; Steiger, William L. (1994), "Algorithms for Ham-Sandwich Cuts", Discrete & Computational Geometry, 11 (4): 433–452, doi:10.1007/BF02574017.

Matoušek, Jiří

(1985), "Partitioning with two lines in the plane", Journal of Algorithms, 6 (3): 430–433, doi:10.1016/0196-6774(85)90011-2.

Megiddo, Nimrod

Peters, James V. (Summer 1981), "The ham sandwich theorem and some related results", The Rocky Mountain Journal of Mathematics, 11 (3): 473–482, :10.1216/RMJ-1981-11-3-473, JSTOR 44236614.

doi

Smith, W. D.; Wormald, N. C. (1998), "Geometric separator theorems and applications", Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280), p. 232, :10.1109/sfcs.1998.743449, ISBN 0-8186-9172-7, S2CID 17962961

doi

Editors (1938), "Notatki: Z topologii", Mathesis Polska (in Polish), 11 (1–2): 26–28.

; Tukey, John W. (1942), "Generalized "sandwich" theorems", Duke Mathematical Journal, 9 (2): 356–359, doi:10.1215/S0012-7094-42-00925-6.

Stone, Arthur H.

(1991), "Bisections and ham-sandwich cuts of convex polygons and polyhedra", Information Processing Letters, 38 (1): 15–21, doi:10.1016/0020-0190(91)90209-Z.

Stojmenovíc, Ivan

, "Ham Sandwich Theorem", MathWorld

Weisstein, Eric W.

by Danielle MacNevin

Ham Sandwich Cuts

An interactive 2D demonstration