Katana VentraIP

Hard disk drive

A hard disk drive (HDD), hard disk, hard drive, or fixed disk,[a] is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces.[1] Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off.[2][3][4] Modern HDDs are typically in the form of a small rectangular box.

"Hard drive" redirects here. For other uses, see Hard Drive (disambiguation).

Hard disk drives were introduced by IBM in 1956,[5] and were the dominant secondary storage device for general-purpose computers beginning in the early 1960s. HDDs maintained this position into the modern era of servers and personal computers, though personal computing devices produced in large volume, like mobile phones and tablets, rely on flash memory storage devices. More than 224 companies have produced HDDs historically, though after extensive industry consolidation, most units are manufactured by Seagate, Toshiba, and Western Digital. HDDs dominate the volume of storage produced (exabytes per year) for servers. Though production is growing slowly (by exabytes shipped[6]), sales revenues and unit shipments are declining, because solid-state drives (SSDs) have higher data-transfer rates, higher areal storage density, somewhat better reliability,[7][8] and much lower latency and access times.[9][10][11][12]


The revenues for SSDs, most of which use NAND flash memory, slightly exceeded those for HDDs in 2018.[13] Flash storage products had more than twice the revenue of hard disk drives as of 2017.[14] Though SSDs have four to nine times higher cost per bit,[15][16] they are replacing HDDs in applications where speed, power consumption, small size, high capacity and durability are important.[11][12] As of 2019, the cost per bit of SSDs is falling, and the price premium over HDDs has narrowed.[16]


The primary characteristics of an HDD are its capacity and performance. Capacity is specified in unit prefixes corresponding to powers of 1000: a 1-terabyte (TB) drive has a capacity of 1,000 gigabytes, where 1 gigabyte = 1 000 megabytes = 1 000 000 kilobytes (1 million) = 1 000 000 000 bytes (1 billion). Typically, some of an HDD's capacity is unavailable to the user because it is used by the file system and the computer operating system, and possibly inbuilt redundancy for error correction and recovery. There can be confusion regarding storage capacity, since capacities are stated in decimal gigabytes (powers of 1000) by HDD manufacturers, whereas the most commonly used operating systems report capacities in powers of 1024, which results in a smaller number than advertised. Performance is specified as the time required to move the heads to a track or cylinder (average access time), the time it takes for the desired sector to move under the head (average latency, which is a function of the physical rotational speed in revolutions per minute), and finally, the speed at which the data is transmitted (data rate).


The two most common form factors for modern HDDs are 3.5-inch, for desktop computers, and 2.5-inch, primarily for laptops. HDDs are connected to systems by standard interface cables such as SATA (Serial ATA), USB, SAS (Serial Attached SCSI), or PATA (Parallel ATA) cables.

Date invented

December 24, 1954 (1954-12-24)[b]

IBM team led by Rey Johnson

2013 specifications for enterprise SAS disk drives state the error rate to be one uncorrected bit read error in every 1016 bits read,[70]

[69]

2018 specifications for consumer SATA hard drives state the error rate to be one uncorrected bit read error in every 1014 bits.[72]

[71]

is a measure of how long it takes the head assembly to travel to the track of the disk that contains data.

Seek time

Rotational latency is incurred because the desired may not be directly under the head when data transfer is requested. Average rotational latency is shown in the table, based on the statistical relation that the average latency is one-half the rotational period.

disk sector

The or data transfer rate (once the head is in the right position) creates delay which is a function of the number of blocks transferred; typically relatively small, but can be quite long with the transfer of large contiguous files.

bit rate

(SCSI), originally named SASI for Shugart Associates System Interface, was standard on servers, workstations, Commodore Amiga, Atari ST and Apple Macintosh computers through the mid-1990s, by which time most models had been transitioned to newer interfaces. The length limit of the data cable allows for external SCSI devices. The SCSI command set is still used in the more modern SAS interface.

Small Computer System Interface

(IDE), later standardized under the name AT Attachment (ATA, with the alias PATA (Parallel ATA) retroactively added upon introduction of SATA) moved the HDD controller from the interface card to the disk drive. This helped to standardize the host/controller interface, reduce the programming complexity in the host device driver, and reduced system cost and complexity. The 40-pin IDE/ATA connection transfers 16 bits of data at a time on the data cable. The data cable was originally 40-conductor, but later higher speed requirements led to an "ultra DMA" (UDMA) mode using an 80-conductor cable with additional wires to reduce crosstalk at high speed.

Integrated Drive Electronics

EIDE was an unofficial update (by Western Digital) to the original IDE standard, with the key improvement being the use of (DMA) to transfer data between the disk and the computer without the involvement of the CPU, an improvement later adopted by the official ATA standards. By directly transferring data between memory and disk, DMA eliminates the need for the CPU to copy byte per byte, therefore allowing it to process other tasks while the data transfer occurs.

direct memory access

(FC) is a successor to parallel SCSI interface on enterprise market. It is a serial protocol. In disk drives usually the Fibre Channel Arbitrated Loop (FC-AL) connection topology is used. FC has much broader usage than mere disk interfaces, and it is the cornerstone of storage area networks (SANs). Recently other protocols for this field, like iSCSI and ATA over Ethernet have been developed as well. Confusingly, drives usually use copper twisted-pair cables for Fibre Channel, not fibre optics. The latter are traditionally reserved for larger devices, such as servers or disk array controllers.

Fibre Channel

(SAS). The SAS is a new generation serial communication protocol for devices designed to allow for much higher speed data transfers and is compatible with SATA. SAS uses a mechanically compatible data and power connector to standard 3.5-inch SATA1/SATA2 HDDs, and many server-oriented SAS RAID controllers are also capable of addressing SATA HDDs. SAS uses serial communication instead of the parallel method found in traditional SCSI devices but still uses SCSI commands.

Serial Attached SCSI

(SATA). The SATA data cable has one data pair for differential transmission of data to the device, and one pair for differential receiving from the device, just like EIA-422. That requires that data be transmitted serially. A similar differential signaling system is used in RS485, LocalTalk, USB, FireWire, and differential SCSI. SATA I to III are designed to be compatible with, and use, a subset of SAS commands, and compatible interfaces. Therefore, a SATA hard drive can be connected to and controlled by a SAS hard drive controller (with some minor exceptions such as drives/controllers with limited compatibility). However, they cannot be connected the other way round—a SATA controller cannot be connected to a SAS drive.

Serial ATA

Current hard drives connect to a computer over one of several bus types, including parallel ATA, Serial ATA, SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Some drives, especially external portable drives, use IEEE 1394, or USB. All of these interfaces are digital; electronics on the drive process the analog signals from the read/write heads. Current drives present a consistent interface to the rest of the computer, independent of the data encoding scheme used internally, and independent of the physical number of disks and heads within the drive.


Typically, a DSP in the electronics inside the drive takes the raw analog voltages from the read head and uses PRML and Reed–Solomon error correction[134] to decode the data, then sends that data out the standard interface. That DSP also watches the error rate detected by error detection and correction, and performs bad sector remapping, data collection for Self-Monitoring, Analysis, and Reporting Technology, and other internal tasks.


Modern interfaces connect the drive to the host interface with a single data/control cable. Each drive also has an additional power cable, usually direct to the power supply unit. Older interfaces had separate cables for data signals and for drive control signals.

(MTBF) does not indicate reliability; the annualized failure rate is higher and usually more relevant.

Mean time between failures

HDDs do not tend to fail during early use, and temperature has only a minor effect; instead, failure rates steadily increase with age.

S.M.A.R.T. warns of mechanical issues but not other issues affecting reliability, and is therefore not a reliable indicator of condition.

[141]

Failure rates of drives sold as "enterprise" and "consumer" are "very much similar", although these drive types are customized for their different operating environments.[143]

[142]

In drive arrays, one drive's failure significantly increases the short-term risk of a second drive failing.

Due to the extremely close spacing between the heads and the disk surface, HDDs are vulnerable to being damaged by a head crash – a failure of the disk in which the head scrapes across the platter surface, often grinding away the thin magnetic film and causing data loss. Head crashes can be caused by electronic failure, a sudden power failure, physical shock, contamination of the drive's internal enclosure, wear and tear, corrosion, or poorly manufactured platters and heads.


The HDD's spindle system relies on air density inside the disk enclosure to support the heads at their proper flying height while the disk rotates. HDDs require a certain range of air densities to operate properly. The connection to the external environment and density occurs through a small hole in the enclosure (about 0.5 mm in breadth), usually with a filter on the inside (the breather filter).[135] If the air density is too low, then there is not enough lift for the flying head, so the head gets too close to the disk, and there is a risk of head crashes and data loss. Specially manufactured sealed and pressurized disks are needed for reliable high-altitude operation, above about 3,000 m (9,800 ft).[136] Modern disks include temperature sensors and adjust their operation to the operating environment. Breather holes can be seen on all disk drives – they usually have a sticker next to them, warning the user not to cover the holes. The air inside the operating drive is constantly moving too, being swept in motion by friction with the spinning platters. This air passes through an internal recirculation (or "recirc") filter to remove any leftover contaminants from manufacture, any particles or chemicals that may have somehow entered the enclosure, and any particles or outgassing generated internally in normal operation. Very high humidity present for extended periods of time can corrode the heads and platters. An exception to this are hermetically sealed, helium filled HDDs that largely eliminate environmental issues that can arise due to humidity or atmospheric pressure changes. Such HDDs were introduced by HGST in their first successful high volume implementation in 2013.


For giant magnetoresistive (GMR) heads in particular, a minor head crash from contamination (that does not remove the magnetic surface of the disk) still results in the head temporarily overheating, due to friction with the disk surface, and can render the data unreadable for a short period until the head temperature stabilizes (so called "thermal asperity", a problem which can partially be dealt with by proper electronic filtering of the read signal).


When the logic board of a hard disk fails, the drive can often be restored to functioning order and the data recovered by replacing the circuit board with one of an identical hard disk. In the case of read-write head faults, they can be replaced using specialized tools in a dust-free environment. If the disk platters are undamaged, they can be transferred into an identical enclosure and the data can be copied or cloned onto a new drive. In the event of disk-platter failures, disassembly and imaging of the disk platters may be required.[137] For logical damage to file systems, a variety of tools, including fsck on UNIX-like systems and CHKDSK on Windows, can be used for data recovery. Recovery from logical damage can require file carving.


A common expectation is that hard disk drives designed and marketed for server use will fail less frequently than consumer-grade drives usually used in desktop computers. However, two independent studies by Carnegie Mellon University[138] and Google[139] found that the "grade" of a drive does not relate to the drive's failure rate.


A 2011 summary of research, into SSD and magnetic disk failure patterns by Tom's Hardware summarized research findings as follows:[140]


As of 2019, Backblaze, a storage provider, reported an annualized failure rate of two percent per year for a storage farm with 110,000 off-the-shelf HDDs with the reliability varying widely between models and manufacturers.[144] Backblaze subsequently reported that the failure rate for HDDs and SSD of equivalent age was similar.[7]


To minimize cost and overcome failures of individual HDDs, storage systems providers rely on redundant HDD arrays. HDDs that fail are replaced on an ongoing basis.[144][90]

Video hard drives, sometimes called "surveillance hard drives", are embedded into and provide a guaranteed streaming capacity, even in the face of read and write errors.[148]

digital video recorders

Drives embedded into ; they are typically built to resist larger amounts of shock and operate over a larger temperature range.

automotive vehicles

Economy[edit]

Price evolution[edit]

HDD price per byte decreased at the rate of 40% per year during 1988–1996, 51% per year during 1996–2003 and 34% per year during 2003–2010.[157][75] The price decrease slowed down to 13% per year during 2011–2014, as areal density increase slowed and the 2011 Thailand floods damaged manufacturing facilities[80] and have held at 11% per year during 2010–2017.[158]


The Federal Reserve Board has published a quality-adjusted price index for large-scale enterprise storage systems including three or more enterprise HDDs and associated controllers, racks and cables. Prices for these large-scale storage systems decreased at the rate of 30% per year during 2004–2009 and 22% per year during 2009–2014.[75]

Competition from SSDs[edit]

HDDs are being superseded by solid-state drives (SSDs) in markets where the higher speed (up to 7 gigabytes per second for M.2 (NGFF) NVMe drives[161] and 2.5 gigabytes per second for PCIe expansion card drives)[162]), ruggedness, and lower power of SSDs are more important than price, since the bit cost of SSDs is four to nine times higher than HDDs.[16][15] As of 2016, HDDs are reported to have a failure rate of 2–9% per year, while SSDs have fewer failures: 1–3% per year.[163] However, SSDs have more un-correctable data errors than HDDs.[163]


SSDs offer larger capacities (up to 100 TB)[37] than the largest HDD and/or higher storage densities (100 TB and 30 TB SSDs are housed in 2.5 inch HDD cases but with the same height as a 3.5-inch HDD),[164][165][166][167][168] although their cost remains prohibitive.


A laboratory demonstration of a 1.33-Tb 3D NAND chip with 96 layers (NAND commonly used in solid state drives (SSDs)) had 5.5 Tbit/in2 as of 2019,[169] while the maximum areal density for HDDs is 1.5 Tbit/in2. The areal density of flash memory is doubling every two years, similar to Moore's law (40% per year) and faster than the 10–20% per year for HDDs. As of 2018, the maximum capacity was 16 terabytes for an HDD,[170] and 100 terabytes for an SSD.[171] HDDs were used in 70% of the desktop and notebook computers produced in 2016, and SSDs were used in 30%. The usage share of HDDs is declining and could drop below 50% in 2018–2019 according to one forecast, because SSDs are replacing smaller-capacity (less than one-terabyte) HDDs in desktop and notebook computers and MP3 players.[172]


The market for silicon-based flash memory (NAND) chips, used in SSDs and other applications, is growing faster than for HDDs. Worldwide NAND revenue grew 16% per year from $22 billion to $57 billion during 2011–2017, while production grew 45% per year from 19 exabytes to 175 exabytes.[173]

Kheong Chn, Sann (2005). (PDF). The Eleventh Advanced International Conference on Telecommunications. Retrieved January 10, 2020.

"An Introduction to the HDD, modelling, detection and decoding for magnetic recording channels"

Messmer, Hans-Peter (2001). The Indispensable PC Hardware Book (4th ed.). Addison-Wesley.  978-0-201-59616-8.

ISBN

(2011). Upgrading and Repairing PCs (20th ed.). Que. ISBN 978-0-7897-4710-5.

Mueller, Scott

Hard Disk Drives Encyclopedia

Video showing an opened HD working

Average seek time of a computer disk

Archived October 6, 2013, at the Wayback Machine

Timeline: 50 Years of Hard Drives

HDD from inside: Tracks and Zones. How hard it can be?

 – firmware modifications, in eight parts, going as far as booting a Linux kernel on an ordinary HDD controller board

Hard disk hacking

February 14, 2013, by Ariel Berkman

Hiding Data in Hard Drive’s Service Areas

Western Digital, January 2013

Rotary Acceleration Feed Forward (RAFF) Information Sheet

Seagate Technology, March 2010

PowerChoice Technology for Hard Disk Drive Power Savings and Flexibility

HGST, Inc., 2015

Shingled Magnetic Recording (SMR)

HGST, Inc., 2015

The Road to Helium

Research paper about perspective usage of magnetic photoconductors in magneto-optical data storage.