Homotopical connectivity
In algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of n-connectedness generalizes the concepts of path-connectedness and simple connectedness.
Not to be confused with Homotopic connectivity.
An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is n-connected (or n-simple connected) if its first n homotopy groups are trivial.
Homotopical connectivity is defined for maps, too. A map is n-connected if it is an isomorphism "up to dimension n, in homotopy".
Homotopy principle[edit]
In geometric topology, cases when the inclusion of a geometrically-defined space, such as the space of immersions into a more general topological space, such as the space of all continuous maps between two associated spaces are n-connected are said to satisfy a homotopy principle or "h-principle". There are a number of powerful general techniques for proving h-principles.