Applications[edit]
An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture.[5]
The LLL algorithm has found numerous other applications in MIMO detection algorithms[6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth. The algorithm can be used to find integer solutions to many problems.[7]
In particular, the LLL algorithm forms a core of one of the integer relation algorithms. For example, if it is believed that r=1.618034 is a (slightly rounded) root to an unknown quadratic equation with integer coefficients, one may apply LLL reduction to the lattice in spanned by and . The first vector in the reduced basis will be an integer linear combination of these three, thus necessarily of the form ; but such a vector is "short" only if a, b, c are small and is even smaller. Thus the first three entries of this short vector are likely to be the coefficients of the integral quadratic polynomial which has r as a root. In this example the LLL algorithm finds the shortest vector to be [1, -1, -1, 0.00025] and indeed has a root equal to the golden ratio, 1.6180339887....
LLL is implemented in