Katana VentraIP

Lasers and aviation safety

Under certain conditions, laser light or other bright lights (spotlights, searchlights) directed at aircraft can be a hazard. The most likely scenario is when a bright visible laser light causes distraction or temporary flash blindness to a pilot, during a critical phase of flight such as landing or takeoff. It is far less likely, though still possible, that a visible or invisible beam could cause permanent harm to a pilot's eyes. Although laser weapons are under development by armed forces, these are so specialized, expensive and controlled that it is improbable for non-military lasers to cause structural damage to an aircraft.

Pointing a laser at an aircraft can be hazardous to pilots,[1] and has resulted in arrests, trials and jail sentences. It also results in calls to license or ban laser pointers. Some jurisdictions such as New South Wales, Australia have restricted laser pointers as a result of multiple incidents.[2]

Lasers and bright lights[edit]

In addition to lasers, other bright directional lights such as searchlights and spotlights can have the same dazzling, distracting, and flashblinding effects.

Lasers in airspace[edit]

Lasers are used in industry and research, such as in atmospheric remote sensing, and as guide stars in adaptive optics astronomy. Lasers and searchlights are used in entertainment; for example, in outdoor shows such as the nightly IllumiNations show at Walt Disney World's Epcot. Laser pointers are used by the general public; sometimes they will be accidentally or deliberately aimed at or near aircraft.


Lasers are even used, or proposed for use, with aircraft. Pilots straying into unauthorized airspace over Washington, D.C. can be warned to turn back by shining eye-safe low-power red and green lasers at them.[3] At least one system has been tested that would use lasers on final approach to help line up the pilot on the proper glideslope. NASA has tested a Helicopter Airborne Laser Positioning System.[4] The Federal Aviation Administration (FAA) has tested laser-projected lines on airport runways, to increase visibility of "hold short" markings.[5] Because of these varied uses, it is not practical to ban lasers from airspace.

Distraction and startle: an unexpected laser or bright light could distract the pilot during a nighttime landing or takeoff. A pilot might not know what was happening at first. They may be worried that a brighter light or other threat would be coming.

Glare and disruption: as the light brightness increases, it starts to interfere with vision. Veiling glare would make it difficult to see out the windscreen. Night vision starts to deteriorate. Laser light is highly directional, so pilots may act to exclude the source from their direct field of vision. Pointer lasers have an illuminance of about 1 lumen/m2, whereas during the day the pilots have to deal with sunlight which is one hundred thousand times stronger.

Temporary works exactly like a bright camera flash: there is no injury, but night vision is temporarily disrupted. There may be afterimages, like a bright camera flash leaving temporary spots.

flash blindness

The photos at right flash because most incidents are of flashes and not of steady illumination. In accidental illuminations there may be just one or a few flashes. Even in deliberate illuminations, it is difficult to keep a hand-held laser focused on a moving target, so there will be a series of longer flashes.[6] With helicopters at close range, it is possible to have a more or less continuous light. The flashes shown greatly exaggerate the duration of a laser flash and use green rather than less visible red light. With a plane traveling hundreds of miles per hour and a laser beam size of only a meter or so, flash durations would be measured in thousandths of a second.[6]


There are some subjects which aviation safety experts agree pose no real hazard. These include passenger exposure to laser light, pilot distraction during cruising or other non-critical phases of flight, and laser damage to the aircraft. The main concerns of safety experts are focused on laser and bright light effects on pilots, especially when they are in a critical phase of flight: takeoff, approach, landing, and emergency maneuvers.[7]


There are four primary areas of concern. The first three are visual effects that temporarily distract or block pilots' vision. These effects are only of concern when the laser emits visible light.


The three visual effects above are the primary concern for aviation experts. This is because they could happen with lower-powered lasers that are commonly available. The fourth concern, eye damage, is much less likely: it would require specialized equipment not readily available to the general public.


It is extremely unlikely that any of the four elements above would cause loss of the aircraft.

Power: the more light emitted, the brighter and more hazardous it will be.

: a low-divergence "tight" beam will be a hazard at greater distances than one which spreads out rapidly.

Beam divergence

Wavelength of the beam: an infrared or ultraviolet laser beam does not present any visual effect risk to pilots, as they cannot see it. However, at high powers it can present an eye damage risk. In some cases, this hazard may be greater since a pilot would not know they were being illuminated. In general, the eyes of pilots in an illuminated nighttime cockpit are most sensitive to greenish-yellow light (of wavelength around 500–600 nanometers, peaking at 555 nm). A blue or red laser will appear much dimmer—and thus less distracting—than a green or yellow laser of equal power. For example, a 10-watt continuous-wave yttrium aluminium garnet laser at 532 nanometers (green) can appear brighter to the eye than an 18-watt continuous-wave argon-ion laser that outputs 10 watts of 514 nm (green-blue) light plus 8 watts of 488 nm (blue) light.[9]

[8]

Pulsing: some laser beams emit their energy in pulses. A pulsed laser presents a greater eye damage risk than a continuous laser of equal average power. This is because the power is packed into shorter but more intense pulses.

Using the lowest power necessary for the task.

Increasing the beam divergence. The beam spreads out faster, so at any given distance, the amount of light entering the eye or a cockpit windscreen will be less (e.g., lower ).

irradiance

Keeping beams away from areas with many aircraft, such as airports and flight paths.

Terminating beams on buildings, dense trees, etc. to prevent laser light from entering protected airspace. This is a common protection measure for outdoor laser shows, if there are structures available for termination.

Using spotters to watch for aircraft. This is commonly done for laser shows which tend to be short-duration (around an hour) and infrequent (nightly shows are rare).

Using automated detection systems such as radar or sky cameras. These are used for long-duration (all night) and frequent (nightly) applications, such as used at astronomical observatories.

laser guide stars

Developing and following policies for outdoor laser operations, such as the standard "Safe Use of Lasers Outdoors" [15] or NASA's "Use Policy for Outdoor Lasers".[16]

ANSI

The Laser Free Zone extends immediately around and above runways, as depicted at right. Light irradiance within the zone must be less than 50 nanowatts per square centimeter (0.05 microwatts per square centimeter). This was set at "a level that would not cause any visual disruption."

[19]

The Critical Flight Zone covers 10 nautical miles (NM) around the airport; the light limit is 5 microwatts per square centimeter (μW/cm2), determined to be the level at which glare becomes significant.

[23]

The optional Sensitive Flight Zone is designated by the FAA, military or other aviation authorities where light intensity must be less than 100 μW/cm2. This might be done for example around a busy flight path or where military operations are taking place. This was identified as the limiting level beyond which flash blindness and afterimages could occur.

[23]

The Normal Flight Zone covers all other airspace. The light intensity must be less than 2.5 milliwatts per square centimeter (2500 μW/cm2). This is about half of the power level.

Class 3R

History[edit]

Until the early 1990s, laser and bright light aviation incidents were sporadic. In the U.S., NASA's Aviation Safety Reporting System showed only one or two incidents per year.[31] The SAE G-10T subcommittee began meeting around 1993 as the number of incidents grew. Almost all of the incidents were known or suspected to be due to outdoor laser displays. Almost all of the concern was over potential eye damage; at the time visual effects were felt to be a minor consequence.


In late 1995, a number of illumination incidents occurred in Las Vegas due to new outdoor laser displays. Although the displays had been approved by the FDA as eye-safe for their airport proximity, no one had realized that the glare and distraction hazard would adversely affect pilots. In December 1995 the FDA issued an emergency order shutting down the Las Vegas shows.


Within the SAE G-10T subcommittee, there was some consideration about cutting back or banning laser shows. However, it became apparent that there were a large number of non-entertainment laser users as well. The focus shifted to control of known laser users, whether shows or industry/research. New policies and procedures were developed, such as the FAA 7400.2 Chapter 29, and Advisory Circular 70-1. Although incidents continued to occur (from January 1996 to July 1999, the FAA's Western-Pacific Region identified more than 150 incidents in which low-flying aircraft were illuminated by lasers),[32] the situation seemed under control.


Then in late 2004 and early 2005 came a significant increase in reported incidents linked to laser pointers. The wave of incidents may have been triggered in part by "copycats" who read press accounts of laser pointer incidents. In one case, David Banach of New Jersey was charged under federal Patriot Act anti-terrorism laws, after he allegedly shone a laser pointer at aircraft.[33]


Responding to the incidents, the Congressional Research Service issued a study on the laser "threat to aviation safety and security."[19] Because there was no federal law specifically banning deliberate laser illumination of aircraft, Congressman Ric Keller introduced H.R. 1400, the "Securing Airplane Cockpits Against Lasers Act of 2005."[34] The bill was passed by the U.S. House and Senate, but did not go to conference and thus did not become law.[35] In 2007, Keller re-introduced the bill as H.R. 1615. Although passed by the House in May 2007, it was not acted on by the Senate before the end of the 110th Congress and never became law.[36]


On March 28, 2008, a coordinated attack took place using four green laser pointers aimed at six aircraft landing at Sydney airport in New South Wales, Australia.[37][38] As a result of this attack plus others, a law was proposed in mid-April 2008 in New South Wales to ban possession of handheld lasers, including low-power classroom pointers.[39][40] The Australian state of Victoria has had a similar ban since 1998, but press reports state that it is easy to buy lasers without a permit.[41]


On February 22, 2009, a dozen planes were targeted with green laser beams at Seattle-Tacoma International Airport.[42] An FAA spokeswoman said there were 148 laser attacks on aircraft in the U.S. from January 1, 2009 to February 23, 2009.[43]


During the July 2013 protests against the presidency of Mohamed Morsi in Egypt and later celebration of his removal, thousands of protesters and revelers aimed laser pointers at government helicopters.[44][45]


On February 2016 a Virgin Atlantic flight from Heathrow to New York JFK Airport was forced to turn back when a laser beam was shone into the cockpit.[46] The incident led the British Airline Pilots' Association to call for lasers to be classified as offensive weapons.[47]


In the first seven months of 2018, United States Armed Forces pilots were targeted with laser points in multiple regions, but particularly in the Middle East.[48]


In December 2021 a Mississippi man is facing federal charges including 5 years in prison and $25,000 in fines for months of targeting aircraft flying into Memphis International Airport.[49]

Dazzler (weapon)

Laser safety

Laser pointer

effective 2017-10-12 (with changes), accessed 2017-12-04 (quoted as "FAA JO Order 7400.2")

FAA Order JO 7400.2L, Procedures for Handling Airspace Matters