Limit (mathematics)
In mathematics, a limit is the value that a function (or sequence) approaches as the input (or index) approaches some value.[1] Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.
This article is about the general concept of limit. For more specific cases, see Limit of a sequence and Limit of a function. For other uses, see Limit § Mathematics.
In formulas, a limit of a function is usually written as
and is read as "the limit of f of x as x approaches c equals L". This means that the value of the function f can be made arbitrarily close to L, by choosing x sufficiently close to c. Alternatively, the fact that a function f approaches the limit L as x approaches c is sometimes denoted by a right arrow (→ or ), as in
which reads " of tends to as tends to ".
The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory.
The limit inferior and limit superior provide generalizations of the concept of a limit which are particularly relevant when the limit at a point may not exist.
History[edit]
According to Hankel (1871), the modern concept of limit originates from Proposition X.1 of Euclid's Elements, which forms the basis of the Method of exhaustion found in Euclid and Archimedes: "Two unequal magnitudes being set out, if from the greater there is subtracted a magnitude greater than its half, and from that which is left a magnitude greater than its half, and if this process is repeated continually, then there will be left some magnitude less than the lesser magnitude set out."[2][3]
Grégoire de Saint-Vincent gave the first definition of limit (terminus) of a geometric series in his work Opus Geometricum (1647): "The terminus of a progression is the end of the series, which none progression can reach, even not if she is continued in infinity, but which she can approach nearer than a given segment."[4]
The modern definition of a limit goes back to Bernard Bolzano who, in 1817, developed the basics of the epsilon-delta technique to define continuous functions. However, his work remained unknown to other mathematicians until thirty years after his death.[5]
Augustin-Louis Cauchy in 1821,[6] followed by Karl Weierstrass, formalized the definition of the limit of a function which became known as the (ε, δ)-definition of limit.
The modern notation of placing the arrow below the limit symbol is due to G. H. Hardy, who introduced it in his book A Course of Pure Mathematics in 1908.[7]