Linear form
In mathematics, a linear form (also known as a linear functional,[1] a one-form, or a covector) is a linear map[nb 1] from a vector space to its field of scalars (often, the real numbers or the complex numbers).
If V is a vector space over a field k, the set of all linear functionals from V to k is itself a vector space over k with addition and scalar multiplication defined pointwise. This space is called the dual space of V, or sometimes the algebraic dual space, when a topological dual space is also considered. It is often denoted Hom(V, k),[2] or, when the field k is understood, ;[3] other notations are also used, such as ,[4][5] or [2] When vectors are represented by column vectors (as is common when a basis is fixed), then linear functionals are represented as row vectors, and their values on specific vectors are given by matrix products (with the row vector on the left).
Applications[edit]
Application to quadrature[edit]
If are distinct points in [a, b], then the linear functionals defined above form a basis of the dual space of Pn, the space of polynomials of degree The integration functional I is also a linear functional on Pn, and so can be expressed as a linear combination of these basis elements. In symbols, there are coefficients for which for all This forms the foundation of the theory of numerical quadrature.[6]
In quantum mechanics[edit]
Linear functionals are particularly important in quantum mechanics. Quantum mechanical systems are represented by Hilbert spaces, which are anti–isomorphic to their own dual spaces. A state of a quantum mechanical system can be identified with a linear functional. For more information see bra–ket notation.
Distributions[edit]
In the theory of generalized functions, certain kinds of generalized functions called distributions can be realized as linear functionals on spaces of test functions.