List of countries by greenhouse gas emissions per capita
This is a list of sovereign states and territories by per capita greenhouse gas emissions due to certain forms of human activity, based on the EDGAR database created by European Commission. The following table lists the 1970, 1990, 2005, 2017 and 2022 annual per capita GHG[n 1] emissions estimates (in metric tons of CO2 equivalent per year). The data include carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from all sources, including agriculture and land use change. They are measured in carbon dioxide-equivalents over a 100-year timescale.[n 2]
This article is about the carbon dioxide equivalent per capita of all greenhouse gases combined. For only carbon dioxide per person, see List of countries by carbon dioxide emissions per capita.
The Intergovernmental Panel on Climate Change (IPCC) 6th assessment report finds that the “Agriculture, Forestry and Other Land Use (AFOLU)” sector on average, accounted for 13-21% of global total anthropogenic GHG emissions in the period 2010-2019.[4] Land use change drivers net AFOLU CO2 emission fluxes, with deforestation being responsible for 45% of total AFOLU emissions. In addition to being a net carbon sink and source of GHG emissions, land plays an important role in climate through albedo effects, evapotranspiration, and aerosol loading through emissions of volatile organic compounds.[4] The IPCC report finds that the LULUCF sector offers significant near-term mitigation potential while providing food, wood and other renewable resources as well as biodiversity conservation. Mitigation measures in forests and other natural ecosystems provide the largest share of the LULUCF mitigation potential between 2020 and 2050. Among various LULUCF activities, reducing deforestation has the largest potential to reduce anthropogenic GHG emissions, followed by carbon sequestration in agriculture and ecosystem restoration including afforestation and reforestation.[4] Land use change emissions can be negative.[n 3][6]
According to Science for Policy report in 2023 by the Joint Research Centre (JRC - the European Commission’s science and knowledge service) and International Energy Agency (IEA), global per-capita emissions in 2022 increased by 0.4% to reach 6.76 tCO2eq/cap, a value still 0.8% lower than in 2019, but have increased by about 8.3% from 6.24 tCO2eq/cap to 6.76 tCO2eq/cap between 1990 and 2022.[7]
The main advantage of measuring total national emissions per capita is that it does take population size into account. China has the largest CO2 and GHG emissions in the world, but also the largest population. For a fair comparison, emissions should be analyzed in terms of the amount of CO2 and GHG per capita.[8]
In 2022, China's GHG per capita emissions levels (10.95) are almost 60 percent those of the United States (17.90) and less than a sixth of those of Qatar (67.38 - the country with the highest emissions of GHG per capita in 2022).[9][7]
Measures of territorial-based emissions, also known as production-based emissions, do not account for emissions embedded in global trade, where emissions may be imported or exported in the form of traded goods, as it only reports emissions emitted within geographical boundaries. Accordingly, a proportion of the CO2 produced and reported in Asia and Africa is for the production of goods consumed in Europe and North America.[10]
According to the review of the scientific literature conducted by the Intergovernmental Panel on Climate Change (IPCC), carbon dioxide is the most important anthropogenic greenhouse gas by warming contribution.[11] Greenhouse gases (GHG) – primarily carbon dioxide but also others, including methane and chlorofluorocarbons – trap heat in the atmosphere, leading to global warming. Higher temperatures then act on the climate, with varying effects. For example, dry regions might become drier while, at the poles, the ice caps are melting, causing higher sea levels. In 2016, the global average temperature was already 1.1 °C above pre-industrial levels.[12]
$_$_$DEEZ_NUTS#0__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#0__subtitleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#0__call_to_action.textDEEZ_NUTS$_$_$$_$_$DEEZ_NUTS#5__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#5__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#9__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#9__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#3__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#6__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#6__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#8__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#8__subtextDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#2__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#2__subtextDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#7__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#7__subtextDEEZ_NUTS$_$_$