Length contraction
Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame.[1] It is also known as Lorentz contraction or Lorentz–FitzGerald contraction (after Hendrik Lorentz and George Francis FitzGerald) and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.
First it is necessary to carefully consider the methods for measuring the lengths of resting and moving objects.[7] Here, "object" simply means a distance with endpoints that are always mutually at rest, i.e., that are at rest in the same inertial frame of reference. If the relative velocity between an observer (or his measuring instruments) and the observed object is zero, then the proper length of the object can simply be determined by directly superposing a measuring rod. However, if the relative velocity is greater than zero, then one can proceed as follows:
The observer installs a row of clocks that either are synchronized a) by exchanging light signals according to the Poincaré–Einstein synchronization, or b) by "slow clock transport", that is, one clock is transported along the row of clocks in the limit of vanishing transport velocity. Now, when the synchronization process is finished, the object is moved along the clock row and every clock stores the exact time when the left or the right end of the object passes by. After that, the observer only has to look at the position of a clock A that stored the time when the left end of the object was passing by, and a clock B at which the right end of the object was passing by at the same time. It's clear that distance AB is equal to length of the moving object.[7] Using this method, the definition of simultaneity is crucial for measuring the length of moving objects.
Another method is to use a clock indicating its proper time , which is traveling from one endpoint of the rod to the other in time as measured by clocks in the rod's rest frame. The length of the rod can be computed by multiplying its travel time by its velocity, thus in the rod's rest frame or in the clock's rest frame.[8]
In Newtonian mechanics, simultaneity and time duration are absolute and therefore both methods lead to the equality of and . Yet in relativity theory the constancy of light velocity in all inertial frames in connection with relativity of simultaneity and time dilation destroys this equality. In the first method an observer in one frame claims to have measured the object's endpoints simultaneously, but the observers in all other inertial frames will argue that the object's endpoints were not measured simultaneously. In the second method, times and are not equal due to time dilation, resulting in different lengths too.
The deviation between the measurements in all inertial frames is given by the formulas for Lorentz transformation and time dilation (see Derivation). It turns out that the proper length remains unchanged and always denotes the greatest length of an object, and the length of the same object measured in another inertial reference frame is shorter than the proper length. This contraction only occurs along the line of motion, and can be represented by the relation
where
Replacing the Lorentz factor in the original formula leads to the relation
In this equation both and are measured parallel to the object's line of movement. For the observer in relative movement, the length of the object is measured by subtracting the simultaneously measured distances of both ends of the object. For more general conversions, see the Lorentz transformations. An observer at rest observing an object travelling very close to the speed of light would observe the length of the object in the direction of motion as very near zero.
Then, at a speed of 13400000 m/s (30 million mph, 0.0447c) contracted length is 99.9% of the length at rest; at a speed of 42300000 m/s (95 million mph, 0.141c), the length is still 99%. As the magnitude of the velocity approaches the speed of light, the effect becomes prominent.
$_$_$DEEZ_NUTS#0__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#0__subtitleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#0__call_to_action.textDEEZ_NUTS$_$_$Symmetry[edit]
The principle of relativity (according to which the laws of nature are invariant across inertial reference frames) requires that length contraction is symmetrical: If a rod is at rest in an inertial frame , it has its proper length in and its length is contracted in . However, if a rod rests in , it has its proper length in and its length is contracted in . This can be vividly illustrated using symmetric Minkowski diagrams, because the Lorentz transformation geometrically corresponds to a rotation in four-dimensional spacetime.[9][10]
$_$_$DEEZ_NUTS#2__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#2__descriptionDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#3__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#3__descriptionDEEZ_NUTS$_$_$
Any observer co-moving with the observed object cannot measure the object's contraction, because he can judge himself and the object as at rest in the same inertial frame in accordance with the principle of relativity (as it was demonstrated by the Trouton–Rankine experiment). So length contraction cannot be measured in the object's rest frame, but only in a frame in which the observed object is in motion. In addition, even in such a non-co-moving frame, direct experimental confirmations of length contraction are hard to achieve, because (a) at the current state of technology, objects of considerable extension cannot be accelerated to relativistic speeds, and (b) the only objects traveling with the speed required are atomic particles, whose spatial extensions are too small to allow a direct measurement of contraction.
However, there are indirect confirmations of this effect in a non-co-moving frame:
$_$_$DEEZ_NUTS#5__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#5__descriptionDEEZ_NUTS$_$_$
Paradoxes[edit]
Due to superficial application of the contraction formula, some paradoxes can occur. Examples are the ladder paradox and Bell's spaceship paradox. However, those paradoxes can be solved by a correct application of the relativity of simultaneity. Another famous paradox is the Ehrenfest paradox, which proves that the concept of rigid bodies is not compatible with relativity, reducing the applicability of Born rigidity, and showing that for a co-rotating observer the geometry is in fact non-Euclidean.
$_$_$DEEZ_NUTS#4__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#4__subtextDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__titleDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__subtextDEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--0DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--1DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--2DEEZ_NUTS$_$_$
$_$_$DEEZ_NUTS#1__answer--3DEEZ_NUTS$_$_$