Katana VentraIP

Measurement in quantum mechanics

In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.

Measuring a quantum system generally changes the quantum state that describes that system. This is a central feature of quantum mechanics, one that is both mathematically intricate and conceptually subtle. The mathematical tools for making predictions about what measurement outcomes may occur, and how quantum states can change, were developed during the 20th century and make use of linear algebra and functional analysis. Quantum physics has proven to be an empirical success and to have wide-ranging applicability. However, on a more philosophical level, debates continue about the meaning of the measurement concept.

Laboratory implementations[edit]

The range of physical procedures to which the mathematics of quantum measurement can be applied is very broad.[55] In the early years of the subject, laboratory procedures involved the recording of spectral lines, the darkening of photographic film, the observation of scintillations, finding tracks in cloud chambers, and hearing clicks from Geiger counters.[b] Language from this era persists, such as the description of measurement outcomes in the abstract as "detector clicks".[57]


The double-slit experiment is a prototypical illustration of quantum interference, typically described using electrons or photons. The first interference experiment to be carried out in a regime where both wave-like and particle-like aspects of photon behavior are significant was G. I. Taylor's test in 1909. Taylor used screens of smoked glass to attenuate the light passing through his apparatus, to the extent that, in modern language, only one photon would be illuminating the interferometer slits at a time. He recorded the interference patterns on photographic plates; for the dimmest light, the exposure time required was roughly three months.[58][59] In 1974, the Italian physicists Pier Giorgio Merli, Gian Franco Missiroli, and Giulio Pozzi implemented the double-slit experiment using single electrons and a television tube.[60] A quarter-century later, a team at the University of Vienna performed an interference experiment with buckyballs, in which the buckyballs that passed through the interferometer were ionized by a laser, and the ions then induced the emission of electrons, emissions which were in turn amplified and detected by an electron multiplier.[61]


Modern quantum optics experiments can employ single-photon detectors. For example, in the "BIG Bell test" of 2018, several of the laboratory setups used single-photon avalanche diodes. Another laboratory setup used superconducting qubits.[40] The standard method for performing measurements upon superconducting qubits is to couple a qubit with a resonator in such a way that the characteristic frequency of the resonator shifts according to the state for the qubit, and detecting this shift by observing how the resonator reacts to a probe signal.[62]

; Zurek, Wojciech H., eds. (1983). Quantum Theory and Measurement. Princeton University Press. ISBN 978-0-691-08316-2.

Wheeler, John A.

; Khalili, Farid Ya. (1992). Quantum Measurement. Cambridge University Press. ISBN 978-0-521-41928-4.

Braginsky, Vladimir B.

Greenstein, George S.; Zajonc, Arthur G. (2006). The Quantum Challenge: Modern Research On The Foundations Of Quantum Mechanics (2nd ed.).  978-0763724702.

ISBN

Alter, Orly; (2001). Quantum Measurement of a Single System. New York: Wiley. doi:10.1002/9783527617128. ISBN 9780471283089.

Yamamoto, Yoshihisa

; Siddiqi, Irfan A. (2024). Quantum Measurement: Theory and Practice. Cambridge University Press. ISBN 978-1009100069.

Jordan, Andrew N.