Faltings's theorem
Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell,[1] and known as the Mordell conjecture until its 1983 proof by Gerd Faltings.[2] The conjecture was later generalized by replacing by any number field.
Let be a non-singular algebraic curve of genus over . Then the set of rational points on may be determined as follows:
Faltings's 1983 paper had as consequences a number of statements which had previously been conjectured:
A sample application of Faltings's theorem is to a weak form of Fermat's Last Theorem: for any fixed there are at most finitely many primitive integer solutions (pairwise coprime solutions) to , since for such the Fermat curve has genus greater than 1.
Generalizations[edit]
Because of the Mordell–Weil theorem, Faltings's theorem can be reformulated as a statement about the intersection of a curve with a finitely generated subgroup of an abelian variety . Generalizing by replacing by a semiabelian variety, by an arbitrary subvariety of , and by an arbitrary finite-rank subgroup of leads to the Mordell–Lang conjecture, which was proved in 1995 by McQuillan[9] following work of Laurent, Raynaud, Hindry, Vojta, and Faltings.
Another higher-dimensional generalization of Faltings's theorem is the Bombieri–Lang conjecture that if is a pseudo-canonical variety (i.e., a variety of general type) over a number field , then is not Zariski dense in . Even more general conjectures have been put forth by Paul Vojta.
The Mordell conjecture for function fields was proved by Yuri Ivanovich Manin[10] and by Hans Grauert.[11] In 1990, Robert F. Coleman found and fixed a gap in Manin's proof.[12]