History[edit]

The concept of a net was first introduced by E. H. Moore and Herman L. Smith in 1922.[1] The term "net" was coined by John L. Kelley.[2][3]


The related concept of a filter was developed in 1937 by Henri Cartan.

Examples[edit]

Subspace topology[edit]

If the set is endowed with the subspace topology induced on it by then in if and only if in In this way, the question of whether or not the net converges to the given point depends solely on this topological subspace consisting of and the image of (that is, the points of) the net

Characterizations of the category of topological spaces

 – Family of sets representing "large" sets

Filter (set theory)

 – Use of filters to describe and characterize all basic topological notions and results.

Filters in topology

 – Reflexive and transitive binary relation

Preorder

 – Topological space characterized by sequences

Sequential space

 – Maximal proper filter

Ultrafilter (set theory)

Sundström, Manya Raman (2010). "A pedagogical history of compactness". :1006.4131v1 [math.HO].

arXiv

; Border, Kim C. (2006). Infinite dimensional analysis: A hitchhiker's guide (3rd ed.). Berlin: Springer. pp. xxii, 703. ISBN 978-3-540-32696-0. MR 2378491.

Aliprantis, Charalambos D.

Beer, Gerald (1993). Topologies on closed and closed convex sets. Mathematics and its Applications 268. Dordrecht: Kluwer Academic Publishers Group. pp. xii, 340.  0-7923-2531-1. MR 1269778.

ISBN

(23 June 1995). Modern Analysis and Topology. Graduate Texts in Mathematics. New York: Springer-Verlag Science & Business Media. ISBN 978-0-387-97986-1. OCLC 31969970. OL 1272666M.

Howes, Norman R.

(1975). General Topology. Graduate Texts in Mathematics. Vol. 27. New York: Springer Science & Business Media. ISBN 978-0-387-90125-1. OCLC 338047.

Kelley, John L.

(1991). General Topology. Springer. ISBN 3-540-90125-6.

Kelley, John L.

(1998). An Introduction to Banach Space Theory. Graduate Texts in Mathematics. Vol. 193. New York: Springer. ISBN 0-387-98431-3.

Megginson, Robert E.

(1997). Handbook of Analysis and Its Foundations. San Diego: Academic Press. ISBN 9780080532998. Retrieved 22 June 2013.

Schechter, Eric

(1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.

Schechter, Eric

Willard, Stephen (2004) [1970]. . Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.

General Topology