Let be an algebraic extension (i.e., L is an algebraic extension of K), such that (i.e., L is contained in an algebraic closure of K). Then the following conditions, any of which can be regarded as a definition of normal extension, are equivalent:[3]
Let L be an extension of a field K. Then:
Let be algebraic. The field L is a normal extension if and only if any of the equivalent conditions below hold.
Normal closure[edit]
If K is a field and L is an algebraic extension of K, then there is some algebraic extension M of L such that M is a normal extension of K. Furthermore, up to isomorphism there is only one such extension that is minimal, that is, the only subfield of M that contains L and that is a normal extension of K is M itself. This extension is called the normal closure of the extension L of K.
If L is a finite extension of K, then its normal closure is also a finite extension.