
Optical amplifier
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback from the cavity is suppressed. Optical amplifiers are important in optical communication and laser physics. They are used as optical repeaters in the long distance fiber-optic cables which carry much of the world's telecommunication links.
Not to be confused with Operational amplifier.There are several different physical mechanisms that can be used to amplify a light signal, which correspond to the major types of optical amplifiers. In doped fiber amplifiers and bulk lasers, stimulated emission in the amplifier's gain medium causes amplification of incoming light. In semiconductor optical amplifiers (SOAs), electron–hole recombination occurs. In Raman amplifiers, Raman scattering of incoming light with phonons in the lattice of the gain medium produces photons coherent with the incoming photons. Parametric amplifiers use parametric amplification.
History[edit]
The principle of optical amplification was invented by Gordon Gould on November 13, 1957.[2] He filed U.S. patent 804,539 on April 6, 1959 titled "Light Amplifiers Employing Collisions to Produce Population Inversions"[3] (subsequently amended as a continuation in part and finally issued as U.S. patent 4,746,201A on May 4, 1988). The patent covered “the amplification of light by the stimulated emission of photons from ions, atoms or molecules in gaseous, liquid or solid state.”[4] In total, Gould obtained 48 patents related to the optical amplifier[5] that covered 80% of the lasers on the market at the time of issuance.[6]
Gould co-founded an optical telecommunications equipment firm, Optelecom Inc., that helped start Ciena Corp with his former head of Light Optics Research, David Huber and Kevin Kimberlin. Huber and Steve Alexander of Ciena invented the dual-stage optical amplifier[7] (U.S. patent 5,159,601) that was a key to the first dense wave division multiplexing (DWDM) system, that they released in June 1996. This marked the start of optical networking.[3] Its significance was recognized at the time by optical authority, Shoichi Sudo and technology analyst, George Gilder in 1997, when Sudo wrote that optical amplifiers “will usher in a worldwide revolution called the Information Age”[4] and Gilder compared the optical amplifier to the integrated circuit in importance, predicting that it would make possible the Age of Information.[8] Optical amplification WDM systems are the common basis of all local, metro, national, intercontinental and subsea telecommunications networks[9] and the technology of choice for the fiber optic backbones of the Internet (e.g. fiber-optic cables form a basis of modern day computer networking).
Optical parametric amplifier[edit]
An optical parametric amplifier allows the amplification of a weak signal-impulse in a nonlinear medium such as a noncentrosymmetric nonlinear medium (e.g. Beta barium borate (BBO)) or even a standard fused silica optical fiber via the Kerr effect. In contrast to the previously mentioned amplifiers, which are mostly used in telecommunication environments, this type finds its main application in expanding the frequency tunability of ultrafast solid-state lasers (e.g. Ti:sapphire). By using a noncollinear interaction geometry optical parametric amplifiers are capable of extremely broad amplification bandwidths.
21st century[edit]
In the 21st century high power fiber lasers were adopted as an industrial material processing tool, and were expanding into other markets including the medical and scientific markets. One key enhancement enabling penetration into the scientific market was improvement in high finesse fiber amplifiers, which became able to deliver single frequency linewidths (<5 kHz) together with excellent beam quality and stable linearly polarized output. Systems meeting these specifications steadily progressed from a few watts of output power initially, to tens of watts and later hundreds of watts. This power increase was achieved with developments in fiber technology, such as the adoption of stimulated brillouin scattering (SBS) suppression/mitigation techniques within the fiber, and improvements in overall amplifier design, including large mode area (LMA) fibers with a low-aperture core,[25] micro-structured rod-type fiber [26][27] helical core,[28] or chirally-coupled core fibers,[29] and tapered double-clad fibers (T-DCF).[30] As of 2015 high finesse, high power and pulsed fiber amplifiers delivered power levels exceeding those available from commercial solid-state single-frequency sources, and stable optimized performance, opening up new scientific applications.[31]
Implementations[edit]
There are several simulation tools that can be used to design optical amplifiers. Popular commercial tools have been developed by Optiwave Systems and VPI Systems.