Katana VentraIP

Oval (projective plane)

In projective geometry an oval is a point set in a plane that is defined by incidence properties. The standard examples are the nondegenerate conics. However, a conic is only defined in a pappian plane, whereas an oval may exist in any type of projective plane. In the literature, there are many criteria which imply that an oval is a conic, but there are many examples, both infinite and finite, of ovals in pappian planes which are not conics.

As mentioned, in projective geometry an oval is defined by incidence properties, but in other areas, ovals may be defined to satisfy other criteria, for instance, in differential geometry by differentiability conditions in the real plane.


The higher dimensional analog of an oval is an ovoid in a projective space.


A generalization of the oval concept is an abstract oval, which is a structure that is not necessarily embedded in a projective plane. Indeed, there exist abstract ovals which can not lie in any projective plane.

In a a set Ω of points is called an oval, if:

projective plane

When |l ∩ Ω| = 0 the line l is an exterior line (or passant),[1] if |l ∩ Ω| = 1 a tangent line and if |l ∩ Ω| = 2 the line is a secant line.


For finite planes (i.e. the set of points is finite) we have a more convenient characterization:[2]


A set of points in an affine plane satisfying the above definition is called an affine oval.


An affine oval is always a projective oval in the projective closure (adding a line at infinity) of the underlying affine plane.


An oval can also be considered as a special quadratic set.[3]

and its various degenerations are valid.

Pascal's Theorem

There are many which leave a conic invariant.

projectivities

Abstract ovals[edit]

Following (Bue1966), an abstract oval, also called a B-oval, of order is a pair where is a set of elements, called points, and is a set of involutions acting on in a sharply quasi 2-transitive way, that is, for any two with for , there exists exactly one with and . Any oval embedded in a projective plane of order might be endowed with a structure of an abstract oval of the same order. The converse is, in general, not true for ; indeed, for there are two abstract ovals which may not be embedded in a projective plane, see (Fa1984).


When is even, a similar construction yields abstract hyperovals, see (Po1997): an abstract hyperoval of order is a pair where is a set of elements and is a set of fixed-point free involutions acting on such that for any set of four distinct elements there is exactly one with .

Ovoid (projective geometry)

; Rosenbaum, Ute (1998), Projective Geometry / from foundations to applications, Cambridge University Press, ISBN 978-0-521-48364-3

Beutelspacher, Albrecht

Buekenhout, F. (1966), "Études intrinsèque des ovales.", Rend. Mat. E Appl., 25 (5): 333–393,  0218956

MR

Brown, Julia M. N.; Cherowitzo, William E. (2000), "The Lunelli-Sce hyperoval in PG(2,16)", J. Geom., 69 (1–2): 15–36, :10.1007/BF01237471, MR 1800454

doi

Cherowitzo, William (1988), "Hyperovals in Desarguesian planes of even order", Ann. Discrete Math., Annals of Discrete Mathematics, 37: 87–94, :10.1016/s0167-5060(08)70228-0, ISBN 978-0-444-70369-9, MR 0931308

doi

Cherowitzo, W. (1996), "Hyperovals in Desarguesian planes: an update", Discrete Math., 155 (1–3): 31–38, :10.1016/0012-365X(94)00367-R, MR 1401356

doi

Cherowitzo, W. (1998), "α-flocks and hyperovals", Geom. Dedicata, 72 (3): 221–246, :10.1023/A:1005022808718, MR 1647703

doi

Cherowitzo, William E.; ; Penttila, Tim (2003), "A unified construction of finite geometries associated with q-clans in characteristic 2", Adv. Geom., 3 (1): 1–21, doi:10.1515/advg.2003.002, MR 1956585

O'Keefe, Christine M.

Cherowitzo, W.; Penttila, T.; Pinneri, I.; Royle, G. F. (1996), "Flocks and ovals", Geom. Dedicata, 60 (1): 17–37, :10.1007/BF00150865, MR 1376478

doi

Dembowski, Peter (1968), , Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, MR 0233275

Finite geometries

Faina, G. (1984), "The B-ovals of order q≤8", J. Combin. Theory Ser. A, 36 (3): 307–314, :10.1016/0097-3165(84)90038-4, MR 0744079

doi

Glynn, David G. (1983), "Two new sequences of ovals in finite Desarguesian planes of even order", (Combinatorial mathematics, X) Lecture Notes in Math., vol. 1036, Berlin: Springer, pp. 217–229, :10.1007/BFb0071521, MR 0731584

doi

Hall, Marshall Jr. (1975), "Ovals in the Desarguesian plane of order 16", Ann. Mat. Pura Appl. (4), 102: 159–176, :10.1007/bf02410604, MR 0358552

doi

(1998), Projective geometries over finite fields (2nd ed.), New York: The Clarendon Press Oxford University Press, pp. xiv+555, ISBN 0-19-850295-8, MR 1612570

Hirschfeld, J. W. P.

Korchmáros, G. (1978), "Collineation groups transitive on the points of an oval [q+2-arc] of S2,q for q even", Atti Sem. Mat. Fis. Univ. Modena (in Italian and English), 27 (1): 89–105 (1979),  0551092

MR

Korchmáros, G. (1991), "Old and new results on ovals in finite projective planes", (Surveys in combinatorics, 1991) London Math. Soc. Lecture Note Ser., vol. 166, Cambridge: Cambridge Univ. Press, pp. 41–72,  1161460

MR

Lunelli, L.; Sce, M. (1958), k-archi completi nei piani proiettivi desarguesiani di rango 8 e 16 (in Italian), Milan: Centro di Calcoli Numerici, Politecnico di Milano, p. 15,  0157276

MR

; Penttila, Tim (1992), "A new hyperoval in PG(2,32)", J. Geom., 44 (1–2): 117–139, doi:10.1007/BF01228288, MR 1169414

O'Keefe, Christine M.

; Penttila, Tim (1991), "Hyperovals in PG(2,16)", European Journal of Combinatorics, 12 (1): 51–59, doi:10.1016/s0195-6698(13)80007-8, MR 1087648

O'Keefe, Christine M.

; Penttila, Tim; Praeger, Cheryl E. (1991), "Stabilisers of hyperovals in PG(2,32)", Advances in finite geometries and designs, Chelwood Gate, 1990, New York: Oxford Univ. Press, pp. 337–351, MR 1138755

O'Keefe, Christine M.

Payne, Stanley E. (1985), "A new infinite family of generalized quadrangles", Congressus Numerantium, 49: 115–128,  0830735

MR

Payne, Stanley E.; Conklin, James E. (1978), "An unusual generalized quadrangle of order sixteen", Journal of Combinatorial Theory, Series A, 24 (1): 50–74, :10.1016/0097-3165(78)90044-4, MR 0462984

doi

Penttila, Tim; Pinneri, Ivano (1994), "Irregular hyperovals in PG(2,64)", J. Geom., 51 (1–2): 89–100, :10.1007/BF01226860, MR 1298348

doi

Penttila, Tim; Royle, Gordon F. (1994), "Classification of hyperovals in PG(2,32)", J. Geom., 50 (1–2): 151–158, :10.1007/BF01222672, MR 1280636

doi

Penttila, Tim; Royle, Gordon F. (1995), "On hyperovals in small projective planes", J. Geom., 54 (1–2): 91–104, :10.1007/BF01222857, MR 1358279

doi

Polster, B. (1997), "Abstract hyperovals and Hadamard designs", Australas. J. Combin., 16: 29–33,  1477516

MR

Qvist, B. (1952), "Some remarks concerning curves of the second degree in a finite plane", Ann. Acad. Sci. Fennicae. Ser. A I. Math.-Phys., 1952 (134): 27,  0054977

MR

Segre, Beniamino (1955), "Ovals in a finite projective plane", , 7: 414–416, doi:10.4153/CJM-1955-045-x, ISSN 0008-414X, MR 0071034

Canadian Journal of Mathematics

Segre, Beniamino (1962), "Ovali e curve σ nei piani di Galois di caratteristica due.", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) (in Italian), 32: 785–790,  0149361

MR

Segre, B.; Bartocci, U. (1971), "Ovali ed altre curve nei piani di Galois di caratteristica due", (in Italian), 18: 423–449, doi:10.4064/aa-18-1-423-449, MR 0295201

Acta Arithmetica

Bill Cherowitzo's Hyperoval Page